

Printed Perforated Lampshades for Continuous Projective Images

Haisen Zhao ${ }^{1}$ Lin Lu ${ }^{1}$ Yuan Wei ${ }^{1}$ Dani Lischinski² Andrei Sharf ${ }^{3}$ Daniel Cohen-Or ${ }^{4}$ Baoquan Chen ${ }^{1}$

From traditional halftoning to 3D printing

3d halftoning/halftoning with light

3D halftoning/halftoning with light

- Basic elements
- 2D tíatstubes (radius, orientat
- Continuous sizes
- Resulting image

Our goal

Given a target image I^{t}, configure a set of tubes perforating the lampshades shell, with its projected image I^{p}, which can:

- approximates I^{t} as close as possible
- display continuous tones, with fine spatial detail
- satisfying the fabrication constraints

Challenges - low spatial resolution

- Each tube cannot be too small.
- The tubes cannot overlap.

Straightforward method

Halftoning distribution [De Goes, et al., SIG 2012] ≈ 3000 tubes

Projected image

Our result
≈ 6000 tubes

Projected image

Related: Illumination effect

[Mitra et al, SIG Asia 2009]
[Alexa et al, Computers \& Graphics 2012]
[Pereira et al, TOG 2014]

[Weyrich et al, CGF 2011]

[Papas et al, TOG 2012]

[Schwartzburg et al, SIG 2014]

Pipeline

Target image

Density function

Tubes distribution

Density function computing

For location (x, y) of the projecting region, its target illuminance $I^{t}(x, y)$ is corresponding to a specific percentage of light unoccluded by the lamp:

Density function computing

- Two cases of desired tubes

$d_{\text {min }}:$ safety margin
$r_{\text {min }}:$ lower bound of tube radius

Density function computing

Densest packing of minimal tubes

Density function computing

Brighter tones

Darker tones

$$
K(r)=\frac{\pi\left(r-0.5 d_{\min }\right)^{2}}{2 \sqrt{3} r^{2}}
$$

$$
K(r)=\frac{r_{\min }^{2} \cos ^{-1}\left(d / r_{\min }\right)-d \sqrt{r_{\min }^{2}-d^{2}}}{\sqrt{3} r^{2}}
$$

Density function computing

For each location (x, y) with its target illuminance $I^{t}(x, y)$, determine the desired radius $r(x, y)$:

- if $I^{t}(x, y) \geq \boldsymbol{B}_{0}(x, y)$, the relevant tubes must be enlarged:

$$
K(r)=\frac{\pi\left(r-0.5 d_{\min }\right)^{2}}{2 \sqrt{3} r^{2}}
$$

- if $I^{t}(x, y)<\boldsymbol{B}_{0}(x, y)$, the relevant tubes must be tilted:

$$
K(r)=\frac{r_{\min }^{2} \cos ^{-1}\left(d / r_{\min }\right)-d \sqrt{r_{\text {min }}^{2}-d^{2}}}{\sqrt{3} r^{2}}
$$

Density function computing

For each location (x, y) with its target illuminance $I^{t}(x, y)$, the desired radius $r(x, y)$, the density value $\rho(x, y)$:

$$
\rho(x, y) \propto 1 / r(x, y)^{2}
$$

Density function computing

Target image

Density function

Disk distribution computing

- Density function ρ, and a tubes number N
- CCVT with de Goes's method
- Maximal inscribed disk inside each of the tessellation cells

Density function

CCVT distribution

Enlarging tubes
Tilting tubes

Disks distribution

Disk distribution computing

- N : the percentage of tubes which achieve their desired radius is greatest

\square Bigger radius
D Desired radius
- Smaller radius

Tube generation

Tube generation

3D model

Projected image simulation

- Light source: a collection of n point light sources $\left\{l_{i}\right\}_{i=1}^{n}$
- Compute the illuminance of each point on the wall

Projected image simulation

Testing environment setting

Creer ${ }^{\circledR}$ XLampr $^{\circledR}$ CXA1507 LED 3000K color temperature diameter of 9 mm

Spherical lampshades

5914 tubes

$$
\begin{aligned}
r_{\min } & =0.6 \mathrm{~mm} \\
d_{\min } & =0.5 \mathrm{~mm}
\end{aligned}
$$

Projet660 Pro (3D Systems)
Printing time: 16.5 hours Drying time: 1 hour

Non-spherical lampshades

7248 tubes

Projected image

Robustness testing

- Lampshade moves from the original position

- Lampshade rotates around the light source center

Quantitatively measure

- Radius cosine waves with different frequencies

Conclusion

- 3D-printed perforated lampshades that project continuous grayscale images
- Trade-off between low resolution and continuity
- Future works
- More light sources
- General receiving surfaces
- Large scale lampshade

Acknowledgements

- Thank you for your attention!

