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1 TECHNIQUE DETAILS

This section provides additional details of our ICEE algorithm for

extracting a Pareto front where each solution s represents a (design,

fabrication) pair. We also include pseudocode (Algorithm 1) of our

ICEE algorithm and a table (Table S1) with all parameters used in

the algorithm.

1.1 Generating Design Variants

Design variants can be generated manually by a user or automat-

ically. In our article, we implement an automatic method, which

includes three steps: (1) detecting all the assembly connectors be-

tween two neighboring parts; (2) enumerating all candidate con-

nector variants for each connect; and (3) generating design vari-

ants by selecting different connector variations of each connector,

as shown in Figure 4 of the main article.

1.2 Fabrication Arrangement Generation

Given a specific design variation, we use a fabrication arrangement

generation algorithm to update the BOP E-graph such that the E-

graph encodes more fabrication arrangements. This algorithm uses

two heuristics described in Section 4.3.3.

For an input design variation di ,which consists of parts pj , 0...n,

this algorithm first groups a library of stock lumbers by their

dimensions, e.g., lumber 2′′ × 4′′ × 24′′, lumber 2′′ × 4′′ × 48′′, and

lumber 2′′ × 4′′ × 96′′ are grouped together. For the parts assigned

to this group, this algorithm starts by packing all the parts on the

largest stock lumber of the current group. The packing process

will be terminated when (1) the current stock lumber is maximally

packed or (2) all parts are packed. In the first case, the packing

process can continue by switching to another stock lumber (also

the largest one) until the second termination condition is reached.

Such a layout process is called a full Traversal, which traverses

all of the parts in a specific order. Prior work [Wu et al. 2019] has

used a similar approach but used the number of Traversals as the

termination criterion, which prevents them to control the number

of fabrication arrangements to generate with this heuristic-driven

method.

1.3 Cost Metrics

This section describes how we compute the three costs: material

usage (fc ), cutting precision (fp ), and fabrication time (ft ). Our
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formulae are updated versions of the ones used by Wu et al. [2019].

Our key improvements are (1) we include a quantitative evaluation

method. Each cost metric is associated with a meaningful unit:

material usage (fc ) is in dollars, cutting precision (fp ) is in inches,

and fabrication time (ft ) is in minutes; (2) we evaluate stock load

and unload time to make the result fabrication time much more

reasonable.

Material Cost. We compute material cost as

fc =
n∑

i=1

pi ,

where pi , the price of the i th piece of stock is estimated based

on costs from standard US vendors [McMASTER-CARR 2021] as

shown in Table S2, n is the total number of pieces of lumber used.

Time. We asked an expert carpenter to assign a fabrication time

to each tool (Table S3) and estimate a stock loading and unload-

ing time for each piece of wood stock (Table S5). They reported

the time taken for (1) full setup of the tool, (2) partial setup when

applicable (a partial setup in one where only some parameters are

changed), (3) full stock load (unload) time (setting up a piece of

wood stock to the tool workspace) (4) partial stock load (unload)

time (setting up a piece of wood stock to the tool workspace where

stocks are stacked), and (5) performing a single operation (e.g., cut).

Out of all the used tools, tracksaw has the most elaborate setup pro-

cess, which is indicated by its long setup times (both full and par-

tial). Bandsaw and jigsaw are set to different full setup times while

cutting lumber and plywood sheet. Only chopsaw and tracksaw al-

low partial setups, the remaining tools do not. The operation time

for a chopsaw is constant — all cuts take a second. For all other

tools, the operation time is based on the length cut per second. For

example, the operation time for a tracksaw cut of length l ′′ is l/4.5
seconds.

We refer to a cut as “partial” if it requires only a partial setup. For

example, if the ith cut is a partial cut on a chopsaw, the time taken

for this cut would be 15s for partial setup and 1s for the cutting

operation leading to a total of 16s for the cut to be completed. The

fabrication time, ft is therefore computed as

ft =
k∑

i=1

(si +wi + oi ),

where si ,wi , and oi are the setup time, stock load and unload time,

and operation time for the ith cut, respectively, and k is the total

number of cuts. si and oi are computed based on Table S3. wi is

computed based on Table S5. For a cut with stacking, wi is mea-

sured as the sum of a full load and unload time for the first piece
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ALGORITHM 1: Iterative Contraction and Extension on E-graphs

1: Input: a carpentry design d ;

2: a discrete set D of possible design variations;

3: Output: a Pareto front of (design, fabrication) pairs

4: Runtime t ; Timeout T ← 4 hours;

5: A solution set S to store all solutions s during optimization;

6: Pareto front P F of current solution set S ; Hypervolume HV of P F ;

7: Number of iterations nd ← 0, np ← 0, Id ← 0, Ip ← 0;

8: Variables HVold and HVold save hypervolumes from the last

iteration;

9: BOP Egraph Initialization

10: Randomly select up to 105 designs from D (Sec 4.3.2);

11: Select the top Kd designs from this set (Sec 4.3.2);

12: Generate Kf arrangements for each design (Sec 4.3.3);

13: Initialize the BOP Egraph E (Sec 4.2);

14: while nd < td and Id < mtd do

15: HVold ← HV

16: Pareto Front Extract (Sec 4.3.4)

17: for an atomic e-node e in E do

18: if e has not been optimized do

19: Try a maximum, P , different orders of cuts;

20: Evaluate each order with the cost metrics;

21: Select the order with minimum fp for e ;

22: Select the order with minimum ft for e ;

// Use a genetic algorithm to extract Pareto front from E
23: np ← 0, Ip ← 0;

24: while np < tp and Ip < mtp do

25: HVold ← HV ;

26: Randomly select Npop terms (T ) from E;

27: Define the lower and upper bound of fp and ft for each T ;

28: if a T ’s lower bound is not dominated by P F do

29: Run optimization with upper bound as start points;

30: Randomly flip the order of some cuts until 20 iterations;

31: Add current terms (T ) to S and update P F and HV ;

32: Update terms (T ) with the crossover and mutation

33: operations;

34: np ← HVold == HV ? np + 1 : 0;

35: Ip ← Ip + 1;

36: if t < T do

37: BOP Egraph Contraction (Sec 4.3.5)

38: Update Iscor e , Escor e and Pscor e for each e-class in E;

39: Prune an e-class if its Pscor e is smaller than Pr at e ;

40: BOP Egraph Expansion (Sec 4.3.6)

// Generate new designs using a single step genetic algorithm

41: Generate Km · Kd design variations;

42: Select the top Knd design variations;

43: Include the result Knd design variations in E;

44: Generate Kf arrangements for each new design (Sec 4.3.3);

// Generate arrangements for existing design variations

45: Select top Kd root e-classes to expand based on Iscor e ;

46: Generate an adaptive number of arrangements for each

47: e-class;

48: Include the result arrangements to E;

49: nd ← HVold == HV ? nd + 1 : 0;

50: Id ← Id + 1; Update t ;

of stock, and multiple partial loads and unload times for the fol-

lowing stocks.

Precision. To measure the precision of a fabrication plan, we

compute (1) measurement error, ϵ , and (2) operation error, p. We

Table S1. This Table Lists All Parameters Used in Our ICEE Algorithm

Param Significance Usage Value

α tuning parameter to trade-off between
exploring designs and fabrications

N/A 0.75

β tuning parameter defined based on α N/A �44 · α 7 + 2�
td terminal condition of ICEE, number

of iterations without hypervolume im-
provement

4.3.1 10

mtd terminal condition of ICEE, maximum
number of iterations

4.3.1 200

T terminal condition of ICEE, timeout 4.3.1 4 hours

Kd number of initialized design variations 4.3.2 2�log10 |D|�

Kf number of fabrication arrangements
of each initialized design variation

4.3.3 β · np

Npop population size in the Pareto front ex-
traction step

4.3.4 4 · Kd

P maximum different orders of cuts of
[Wu et al. 2019] method in the Pareto
front extraction step

4.3.4 2 · (β − 2)

tp terminal condition of [Wu et al. 2019]
method in the Pareto front extraction
step, number of iterations without hy-
pervolume improvement

4.3.4 20

mtp terminal condition of [Wu et al. 2019]
method in the Pareto front extraction
step, maximum number of iterations

4.3.4 200

mcp crossover probability of [Wu et al.
2019] method in the Pareto front ex-
traction step

4.3.4 0.95

mmp mutation probability of [Wu et al.
2019] method in the Pareto front ex-
traction step

4.3.4 0.80

Iscor e impact of an e-class, measured based
on how often it is used in the set of
solutions in the current Pareto front

4.3.5 N/A

Escor e measure how much an e-class has
been explored

4.3.5 N/A

w the weight to trade-off between explo-
ration and impact

4.3.5 0.70

Pr at e If the Pscor e is smaller that the prun-
ing rate, Pr at e , the e-class is removed
along with any e-nodes pointing to
this e-class (i.e. parent e-nodes)

4.3.5 0.30

mcd crossover probability of the expansion
step to generate new design variations
using a single genetic algorithm

4.3.6 0.95

mmd mutation probability of the expansion
step to generate new design variations
using a single genetic algorithm

4.3.6 0.80

Km get Km · Kd design variations by ap-
plying Km times of the single step ge-
netic algorithm of the expansion step

4.3.6 10

Knd selecting the top Knd , Knd ∈ [0, kd ]
of the expansion step.

4.3.6 �(1.0 − α ) · Kd �

Each raw indicates the parameter (Param), the meaning of the parameter
(Significance), the related section where the parameter appears for the first
time (Usage) and the parameter value (Value) in our implementation.

usem = 1/16′′ as the minimum measurement that can be made in

any of the currently supported tools. The measurement error for

length,m′ is computed as

ϵ =min(m′%m,m − (m′%m)),

which, intuitively, is the residual length that cannot be measured

by our tools. For operation error, we again asked an expert to esti-

mate the error per operation for each tool (Table S4). The error for

the ith cut is, therefore, ϵi + pi . fp is then computed as

fp =
k∑

i=1

(ϵi + pi ),
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Table S2. Prices of Stocks

Stock Dimension Material Cost ($)

2′′ × 2′′ 24′′ 3.0

2′′ × 2′′ 48′′ 5.5

2′′ × 2′′ 96′′ 10.0

2′′ × 4′′ 24′′ 3.0

2′′ × 4′′ 48′′ 5.5

2′′ × 4′′ 96′′ 10.0

4′′ × 4′′ 24′′ 7.5

4′′ × 4′′ 48′′ 13.75

4′′ × 4′′ 96′′ 25.0

2′′ × 8′′ 24′′ 7.5

2′′ × 8′′ 48′′ 13.75

2′′ × 8′′ 96′′ 25.0

1/2′′ 12′′ × 20′′ 5.5

1/2′′ 24′′ × 20′′ 10.0

1/2′′ 48′′ × 36′′ 30.0

3/4 ′′ 12′′ × 20′′ 7.0

3/4 ′′ 24′′ × 20′′ 12.0

3/4 ′′ 48′′ × 36′′ 32.0

where k is the total number of cuts. Lower values of fp indicate

higher precision.

1.3.1 Mixed-material Implementation. By introducing a new

material, we must accommodate the cost of using this new mate-

rial in our metrics. Based on an expert’s input, we set the material

price of metal to be 20 times that of wood. All of the same tools

can be used to cut metal sheets, using a specific blade. Setup time

is the same, but the execution time is set to 10 times slower, and

stock loading and loading time are five times slower. Finally, the

jigsaw’s precision error is set to two times that of wood. Modulo

the cost difference, we apply the same process to evaluate the fab-

rication cost.

1.4 Pareto Front Extraction

In Section 4.3.4 of the main article, we propose two methods to

speed up the Pareto front extraction. This section provides more

details of the two methods. For an atomic e-node that has not been

previously optimized, we simply try a maximum, P , different or-

ders of cuts (each cutting order is evaluated using the cost metrics

in Section 1.3), then select the cutting order with minimum preci-

sion error (fp ) and the one with minimum fabrication time (ft ).

To apply the branch and bound technique, we need to define

the lower and upper bound for the precision error (fp ) and the

time cost (ft ). A term T ’s cutting order can be initialized by tak-

ing the cutting order used in its contained atomic e-node. We first

select the cutting order with minimized precision of each atomic

e-node, then evaluate its precision error defined as the precision

upper bound of the term. The time upper bound is set by taking

the cutting order with minimized time of each atomic e-node. The

precision (time) lower bound is defined as the evaluated precision

(time) cost, ignoring the dependency relationship between cuts be-

longing to the same stock. The dependency relationship indicates

the order of a cut with respect to other cuts. In other words, the

time lower bound is computed by the assumption that each cut is

independent of the other.

If the precision (or time) lower bound is not dominated by the

Pareto front of all computed solutions S, we run an optimization

that uses the upper bound as a starting point. For the optimization,

we randomly flip the order of some cuts until t iterations. We set t
as 20 in our experiments.

2 RESULTS AND DISCUSSION

In this section, we provide additional results of our ICEE pipeline

for exploring the space of design variations and fabrication plans

of Figure 7. Table S6 shows the detailed comparison between our

pipeline and the no design exploration pipeline. At the end of this

supplemental material, for each model, we demonstrate some rep-

resentative design variations and fabrication plans extracted with

our ICEE pipeline and the baseline method.

2.1 Carpentry Compiler Parameters

During the comparison between our pipeline and the Carpentry

Compiler pipeline [Wu et al. 2019], we use the default parameter

setting used in their experiments, the number of Traversal T = 50,

the number of top e-nodesn = 10, the maximum different orders of

cuts P = 25, the population size during E-graph extraction as 120,

the probability of crossover and mutation pc = 0.95,pm = 0.1.

2.2 Running Time Analysis

On average, our pipeline spends 4.2% of its runtime in design ex-

traction, 5.8% of its time generating packings, 64.5% of its time as-

signing cutting orders, and 21.6% of its time in applying genetic al-

gorithms to extract Pareto front of terms. This translates to 10.0%

of its runtime in the expansion and contraction phase, 86.1% in the

extraction phase, and the other 3.9% everywhere else.

2.3 Comparison with Baseline

As shown in Figure S1, we cannot find exactly the same front due to

convergence and stochasticity. In order to make this comparison,

we have tuned the parameters to be as close as possible. This means

we do not find exactly the same hypervolume indicated in Table S7.

However, hypervolume is unintuitive to compare, so we believe

presenting plots for comparison is far more compelling.

2.4 Convergence

Due to the combinatorial nature of the problem, we cannot guar-

antee that we discover the true Pareto front. In what follows we

discuss how this limitation can affect the results of our evaluation.

2.4.1 Increasing the Design Space. The intractable search im-

plies that we have a finite amount of resources to spend search-

ing the space. Realistically, this means we can only explore a sub-

set of the design space. Consider the design of the “Window” in

Figure 7. If we permit this model to have angled joints instead of

just 90 degree joints, the space of design variants becomes much

larger. Ideally, the result for this new window variant should be

at least as optimal as the result for the original window. However,

our approach was able to explore only a portion of the vast de-

sign space (|D| = 1520052, compared to |D| = 10463 for the

simpler window model) and found a worse landscape of solutions

(Figure S3). For models with a large design space, if the initial
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Table S3. Fabrication Times for Different Tools

Tool
Full setup (s)

Partial setup (s) Op Time
Lumber Plywood

Chopsaw 60 60 15 1 s

Bandsaw 20 90 N/A 1 inch/s

Jigsaw 30 60 N/A 1 inch/s

Tracksaw 180 180 75 4.5 inch/s

Drill 20 20 N/A 0.1 inch (depth)/s

All times are converted to minutes in our results.

Table S4. Error Per Cut for Each Tool

Tool Operation Error

Chopsaw 1/64th of an inch

Bandsaw 1/16th of an inch

Jigsaw 3/16th of an inch

Tracksaw 1/32nd of an inch

Drill 1/32nd of an inch

Table S5. Loading and Unloading Time of Stocks

Stock F-Load (s) P-Load (s) F-Unload (s) P-Unload (s)

2′′ × 2′′ × 4′′ 10 1 5 1

2′′ × 2′′ × 48′′ 20 2 8 2

2′′ × 2′′ × 96′′ 40 3 15 2

2′′ × 4′′ × 24′′ 10 1 5 1

2′′ × 4′′ × 48′′ 20 2 8 2

2′′ × 4′′ × 96′′ 40 4 15 2

4′′ × 4′′ × 24′′ 15 2 5 1

4′′ × 4′′ × 48′′ 30 4 10 2

4′′ × 4′′ × 96′′ 60 6 20 3

2′′ × 8′′ × 24′′ 15 2 5 1

2′′ × 8′′ × 48′′ 30 4 10 2

2′′ × 8′′ × 96′′ 60 6 20 3

1/2′′ × 12′′ × 20′′ 30 3 10 2

1/2′′ × 24′′ × 20′′ 50 5 15 2

1/2′′ × 48′′ × 36′′ 100 10 20 2

3/4 ′′ × 12′′ × 20′′ 30 3 10 2

3/4 ′′ × 24′′ × 20′′ 50 5 15 2

3/4 ′′ × 48′′ × 36′′ 100 10 20 2

All times are converted to minutes in our results.

design variants picked by our algorithm are too far from the op-

timal ones, then our algorithm may never reach those optimal

points.

To avoid similar potential pitfalls, we might be able to allocate

our resources to effectively direct the search. In particular, one

thing we can do to navigate this space more precisely is to expose

a parameter, alpha.

α is a parameter that roughly defines the tradeoff between

breadth (exploring many designs) and depth (exploring variations

within a small number of designs). For our experiments, we set α
to a default value of 0.75. However, in cases where the initial de-

sign is believed to be optimal or close to optimal, the user may in-

crease α to encourage deeper exploration of the initial and similar

designs. In cases where our baseline of optimizing the fabrication

for a single design outperforms exploring many designs in the de-

fault configuration, we have found that increasing α to 0.95 makes

the performance at least as good again.

This note about parameter tuning reveals interesting implica-

tions. In particular, our new algorithm does not always fully dom-

inate fabrication-plan-only exploration with default parameters.

There are models where the input design is already fairly opti-

mized and does not offer many opportunity for improvement. Take

a model that is simple or is composed of many instances of the

Fig. S1. Pareto fronts generated from our pipeline and baseline method.

same shape. The Adirondack chair is such an example. It would be

clear that an optimal packing arrangement would minimize mate-

rial, cuts, and error by stacking cuts; design variations would only

deviate from the simplicity of the fabrication plan and there are

no improvements possible. The baseline method has the advantage

with these models, because it spends its search time deeply explor-

ing fabrication plans, while ICEE must also spend time searching

across design variations. Tuning the parameter alpha can help us

perform as well as the baseline method, as seen in Figure ?? (a), (b),

and (c).

From these examples, we see that comparing approaches while

using parameter tuning is trickier and subtler.

2.4.2 Comparisons with [Wu et al. 2019]. Notably, comparisons

with the approaches not employing design exploration are also sus-

ceptible to the imprecision in convergence. In previous sections,

we ran each tool with its default parameters. Tuning the param-

eters for each approach would change the results and make the

difference in Pareto fronts difficult to assess. Neither approach dis-

covers the true Pareto front, so an absolute comparison depends

on the input parameters. Fortunately, we avoid the brunt of this

pitfall: The selling point of our design space exploration approach

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.
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Table S6. Performance Comparison between Our Method and the Baseline Method (No Design Exploration Pipeline)

Model HVbase HVour Ref. Point Mbase ($) Pbase (′′) Tbase (m) Mour ($) Pour (′′) Tour (m)

Frame 881570 902017 (100.0,100.0) 10.00 N/A 1.98 8.50 N/A 1.37

L-Frame 796637 797655 (100.0,100.0) 18.50 N/A 2.15 18.50 N/A 2.05

A-bookcase 698414 702256 (100.0,100.0,100.0) 23.00 0.16 8.82 23.00 0.13 8.53

S-Chair 683887 698016 (100.0,100.0) 25.50 N/A 7.92 25.50 N/A 5.92

Table 833919 849705 (100.0,100.0) 20.00 N/A 7.18 20.00 N/A 5.78

F-Cube 817648 825935 (100.0,100.0) 15.50 N/A 3.08 15.50 N/A 2.12

Window 754863 777711 (100.0,100.0) 20.00 N/A 4.93 20.00 N/A 2.38

Bench 355824 369260 (100.0,100.0) 55.50 N/A 17.03 53.00 N/A 20.38

A-Chair 596346 578014 (100.0,100.0) 35.50 N/A 6.25 35.50 N/A 9.52

F-Pot 24155184 24264553 (300.0,300.0,300.0) 13.00 0.29 19.13 13.00 0.26 17.91

Z-Table 19716012 20386788 (300.0,300.0,300.0) 55.50 0.35 30.69 53.00 0.28 24.28

Loom 20469248 21040283 (300.0,300.0,300.0) 27.50 1.47 48.26 25.50 0.58 43.86

J-Gym 13925991 15657249 (300.0,300.0,300.0) 96.00 1.82 72.02 89.00 0.62 51.38

D-Chair 543771 539241 (100.0,100.0) 35.50 N/A 15.00 35.50 N/A 16.20

Bookcase 20266354 21957242 (300.0,300.0,300.0) 40.00 0.86 37.53 30.00 0.27 24.71

Dresser 21237296 22866170 (300.0,300.0,300.0) 30.00 0.61 36.48 30.00 0.14 15.42

In this table, we first report the hypervolume value of our method (HVour ) and the baseline method (HVbase ). The reference points are also listed used
for the hyper-volume computation. We also report the minimal material usage, the minimal cutting precision and the minimal fabrication time of the
Pareto fronts of baseline method (Mbase , Pbase , Tbase ) and the Pareto fronts of our pipeline (Mour , Pour , Tour ). The cutting precision of some models
is not reported for that precision cost has not been taken into the objective metrics. We use bold font to indicate the hypervolume and these fabrication
costs where we are better than the baseline method.

Table S7. Hypervolume Result of the Performance

Validation Experiment

Model HVbase HVour Ref. Point

Frame 901997 902017 (100.0,100.0)

J-Gym 15036794 15657249 (300.0,300.0,300.0)

L-Frame 797573 797655 (100.0,100.0)

Table 751206 849705 (100.0,100.0)

Window 778158 777711 (100.0,100.0)

In this table, we report the hypervolume of the Pareto fronts
computed from our method (HVour ) and the “baseline” method
(HVbase ) . “Baseline” indicates extracting the Pareto front
fabrication plans fro each design variation explored by our
method independently with the Carpentry Compiler
pipeline [Wu et al. 2019]. The reference points used for
hypervolume computation are also reported.

is not about eking out marginal improvements over the baseline,

but about exploring a completely different space.

Though we may not search anyone design as thoroughly when

using default parameters, our approach is able to do something

the baseline cannot: discover optimizations to the input design

when they exist. Consider elaborate models where there are many

ways to pack and fabricate any design, and due to the com-

plexity and number of parts, the designer has diminishing intu-

ition about how to achieve some desired point in the space of

tradeoffs.

An example that illustrates this complexity is the Jungle Gym

model. The model uses a mix of 1D and 2D wood and has a num-

ber of components. From Figure S2(d) and (e), we see that the ini-

tial design was suboptimal, and just by exploring several different

design variations, we find a number of plans that save greatly on

our three objectives. Even the expert plan is completely dominated

by the pareto front, indicating that good designs are not always

readily apparent.

Fig. S2. Pareto fronts of the A-Chair model with different alpha, (a) shows

the result of a small alpha (0.5), (b) shows the result of the default alpha

(0.75), (c) shows the result of a bigger alpha (0.95). The Pareto fronts gen-

erated from no design exploration pipeline stay the same in (a, b, c). Pareto

fronts of the J-Gym model with tuning parameters of the no design explo-

ration pipeline, (d) show results of the default parameters, and (e) show the

Pareto fronts with tuning parameters of the no design exploration pipeline.

The Pareto fronts generated from our pipeline stay the same in (d, e).

Our tool takes much longer to finish running as it explores the

design space jointly with the fabrication space. Because this is a

synthesis problem, one might ask if allowing the baseline to run

for longer would result in better fabrication plans for the initial

design. We chose not to attempt a comparison of the two algo-

rithms for two reasons. Although it is possible that allowing the

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.
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Fig. S3. Example showing a limitation of our approach: The star dots indi-

cate the Pareto fronts with allowing the Window model to have arbitrarily

angled connectors; the colored dots indicate ones without arbitrarily an-

gled connectors. Both results are generated with the default parameter of

our ICEE pipeline.

fabrication-space-only algorithm to run longer will help it find

lower-cost plans, there is no parameter that directly controls how

long the algorithm runs. The second reason is that we are supply-

ing a new approach that explores a different solution space, and

targets a different problem. Controlling for the running time of the

algorithm would still not create an apples-to-apples comparison.

2.5 Scalarization Results

Table S8 shows the scalarization of some of the tradeoffs found on

the Pareto front with our method. Note that these results are all for

the wood models with our default cost metric. When time is not

worth a lot, plans with low material cost dominate. When time is

worth more much than materials, low time become cheapest. We

observe a variety of fabrication plans being effective at different

points.

Table S8. The Percent Improvement of Minimum-cost

(After Scalarization) Plans of the Baseline Compared

to the Minimum-cost Plans of Design Space Exploration,

When Scalarized at Different Prices

Percentage improvement (%)

Model
Carpenter price ($/hour )

0 10 20 40 80 160 240 400

Frame 15 19 21 20 15 10 12 16

L-Frame 0 1 2 2 1 3 1 0

A-bookcase 0 1 2 6 7 6 6 5

S-Chair 0 1 2 2 6 9 11 14

Table 0 1 2 3 4 7 10 12

F-Cube 0 4 5 3 3 5 6 8

Window 0 2 4 12 20 26 28 31

Bench 5 4 4 4 4 5 1 −4

A-Chair 0 −2 −4 −4 −3 −4 −9 −16

F-Pot 0 3 4 5 7 9 9 8

Z-Table 5 5 6 8 11 11 11 12

Loom 7 3 1 0 3 3 4 5

J-Gym 7 7 7 8 11 17 20 23

D-Chair 0 1 1 2 3 2 0 −2

Bookcase 25 16 10 7 8 12 14 18

Dresser 0 2 4 6 8 25 33 42
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Fig. S4. Design variants and fabrication plans extracted with our ICEE algorithm (Frame).
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Fig. S5. Design variants and fabrication plans extracted with our ICEE algorithm (A-Chair).
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Fig. S6. Design variants and fabrication plans extracted with our ICEE algorithm (Table).

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.



32:10 • H. Zhao et al.

Fig. S7. Design variants and fabrication plans extracted with our ICEE algorithm (Window).
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Fig. S8. Design variants and fabrication plans extracted with our ICEE algorithm (L-Frame).
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Fig. S9. Design variants and fabrication plans extracted with our ICEE algorithm (D-Chair).

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.



Co-Optimization of Design and Fabrication Plans for Carpentry • 32:13

Fig. S10. Design variants and fabrication plans extracted with our ICEE algorithm (Bench).
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Fig. S11. Design variants and fabrication plans extracted with our ICEE algorithm (F-Cube).
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Fig. S12. Design variants and fabrication plans extracted with our ICEE algorithm (J-Gym).
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Fig. S13. Design variants and fabrication plans extracted with our ICEE algorithm (Bookcase).
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Fig. S14. Design variants and fabrication plans extracted with our ICEE algorithm (A-Bookcase).
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Fig. S15. Design variants and fabrication plans extracted with our ICEE algorithm (Dresser).
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Fig. S16. Design variants and fabrication plans extracted with our ICEE algorithm (F-Pot).
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Fig. S17. Design variants and fabrication plans extracted with our ICEE algorithm (Z-Table).
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Fig. S18. Design variants and fabrication plans extracted with our ICEE algorithm (Loom).
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