Co-Optimization of Design and Fabrication Plans for Carpentry

HAISEN ZHAOQ, University of Washington and Shandong University and IST Austria

MAX WILLSEY, AMY ZHU, CHANDRAKANA NANDI, and ZACHARY TATLOCK, University of Washington
JUSTIN SOLOMON, Massachusetts Institute of Technology

ADRIANA SCHULZ, University of Washington

=15 A _T":‘E =15 - _—
. el

. e g2 1%

EII- O —_—— EH- ‘.:‘)
o] te o=]t8s o]
é Z' 5 Z' [] ° \\‘,

24 27 30 33 36 39 42 45 48
Material Cost (dollar)

24 27 30 33 36 39 42 45 48
Material Cost (dollar)

(a) (b)

Fig. 1. Our system jointly explores the space of discrete design variants and fabrication plans to generate a Pareto front of (design, fabrication plan) pairs
that minimize fabrication costs. In this figure, (a) is the input design for a chair and the Pareto front that only explores the space of fabrication plans for
this design, (b) shows the Pareto front generated by joint exploration of both the design variants and fabrication plans for the chair, where each point is a
(design, fabrication plan) pair. Design variations indicate different ways to compose the same 3D model from a collection of parts and are illustrated with
the same color in the Pareto front. A physical chair is fabricated by following the result fabrication plan. The Pareto front of joint exploration dominates

the Pareto front of (a), which shows that the fabrication cost can be significantly improved by exploring design variations.

Past work on optimizing fabrication plans given a carpentry design can pro-
vide Pareto-optimal plans trading off between material waste, fabrication
time, precision, and other considerations. However, when developing fab-
rication plans, experts rarely restrict to a single design, instead considering
families of design variations, sometimes adjusting designs to simplify fab-
rication. Jointly exploring the design and fabrication plan spaces for each
design is intractable using current techniques. We present a new approach

This material is based upon work supported by the National Science Foundation under
Grant Nos. CCF-2017927, 1IS-1954028, IIS-1838071, 1749570 and 1813166. Any opin-
ions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation. The work is also supported by the Google faculty award and the NSF
China (62072284). Solomon acknowledges the generous support of Army Research
Office grant W911NF2010168, of Air Force Office of Scientific Research award FA9550-
19-1-031, from the CSAIL Systems that Learn program, from the MIT-IBM Watson
Al Laboratory, from the Toyota-CSAIL Joint Research Center, from a gift from Adobe
Systems, from an MIT.nano Immersion Lab/NCSOFT Gaming Program seed grant,
and from the Skoltech-MIT Next Generation Program.

Authors’ addresses: H. Zhao, M. Willsey, A. Zhu, C. Nandi, Z. Tatlock, and A. Schulz,
Paul G. Allen School of Computer Science & Engineering, University of Washington,
185 E Stevens Way, Box 352355, Seattle, WA, 98195-2355; emails: {haisen, mwillsey,
amyzhu, cnandi, ztatlock, adriana}@cs.washington.edu; J. Solomon, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139; email:
jsolomon@mit.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0730-0301/2022/03-ART32 $15.00

https://doi.org/10.1145/3508499

to jointly optimize design and fabrication plans for carpentered objects. To
make this bi-level optimization tractable, we adapt recent work from pro-
gram synthesis based on equality graphs (e-graphs), which encode sets of
equivalent programs. Our insight is that subproblems within our bi-level
problem share significant substructures. By representing both designs and
fabrication plans in a new bag of parts (BOP) e-graph, we amortize the
cost of optimizing design components shared among multiple candidates.
Even using BOP e-graphs, the optimization space grows quickly in prac-
tice. Hence, we also show how a feedback-guided search strategy dubbed
Iterative Contraction and Expansion on E-graphs (ICEE) can keep the size
of the e-graph manageable and direct the search towards promising candi-
dates. We illustrate the advantages of our pipeline through examples from
the carpentry domain.

CCS Concepts: « Computing methodologies — Computer graphics;
Additional Key Words and Phrases: Fabrication, programming languages

ACM Reference format:

Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tat-
lock, Justin Solomon, and Adriana Schulz. 2022. Co-Optimization of Design
and Fabrication Plans for Carpentry. ACM Trans. Graph. 41, 3, Article 32
(March 2022), 13 pages.

https://doi.org/10.1145/3508499

1 INTRODUCTION

While optimizing designs for fabrication is a long-standing and
well-studied engineering problem, the vast majority of the work
in this area assumes that there is a unique map from a design
to a fabrication plan. In reality, however, many applications al-
low for multiple fabrication alternatives. Consider, for example,

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

https://orcid.org/0000-0002-6389-1045
mailto:permissions@acm.org
https://doi.org/10.1145/3508499
https://doi.org/10.1145/3508499

32:2 « H.Zhaoetal

the model is shown in Figure 1(a), where different fabrication
plans trade-off material cost and fabrication time. In this context,
fabrication-oriented design optimization becomes even more chal-
lenging, since it requires exploring the landscape of optimal fab-
rication plans for many design variations. Every variation of the
original design (Figure 1(b)) determines a new landscape of fabrica-
tion plans with different cost trade-offs. Designers must therefore
navigate the joint space of design and fabrication plans to find the
optimal landscape of solutions.

In this work, we present a novel approach that simultaneously
optimizes both the design and fabrication plans for carpentry. Prior
work represents carpentry designs and fabrication plans as pro-
grams [Wu et al. 2019] to optimize the fabrication plan of a single
design at a time. Our approach also uses a program-like represen-
tation, but we jointly optimize the design and the fabrication plan.

Our problem setting has two main challenges. First, the discrete
space of fabrication plan alternatives can vary significantly for
each discrete design variation. This setup can be understood as a bi-
level problem, characterized by the existence of two optimization
problems in which the constraint region of the upper-level prob-
lem (the joint space of designs and fabrication plans) is implicitly
determined by the lower-level optimization problem (the space of
feasible fabrication plans given a design). The second challenge
is that there are multiple conflicting fabrication objectives. Plans
that improve the total production time may waste more material
or involve less precise cutting operations. Our goal is therefore
to find multiple solutions to our fabrication problem that repre-
sent optimal points in the landscape of possible trade-offs, called
the Pareto front. Importantly, the different fabrication plans on the
Pareto front may come from different design variations. The com-
plexity of the bi-level search space combined with the need for
finding a landscape of Pareto-optimal solutions makes this opti-
mization challenging.

We propose a method to make this problem computationally
tractable in light of the challenges above. Our key observation is
that there is redundancy on both levels of the search space that can
be exploited. In particular, different design variations may share
similar subsets of parts, which can use the same fabrication plans.
We propose exploiting this sharing to encode a large number of de-
sign variations and their possible fabrication plans compactly. We
use a data structure called an equivalence graph (e-graph) [Nelson
1980] to maximize sharing and thus amortize the cost of heavily
optimizing part of a design since all other design variations share
a part benefit from its optimization.

E-graphs have been growing in popularity in the programming
languages community; they provide a compact representation for
equivalent programs that can be leveraged for theorem proving
and code optimization. There are two challenges in directly apply-
ing e-graphs to design optimization under fabrication variations,
detailed below.

First, the different fabrication plans for a given design are all
semantically equivalent programs. However, the fabrication plans
associated with different design variations, in general, are not se-
mantically equivalent, i.e., they may produce different sets of parts.
This makes it difficult to directly apply traditional techniques,
which exploit sharing by searching for minimal cost, but still se-
mantically equivalent, versions of a program. One of our key tech-

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

nical contributions is therefore a new data structure for repre-
senting the search space, which we call the Bag-of-Parts (BOP)
E-graph. This data structure takes advantage of common substruc-
tures across both design and fabrication plans to maximize redun-
dancy and boost the expressive power of e-graphs.

Second, optimization techniques built around e-graphs have
adopted a two-stage approach: expansion (incrementally growing
the e-graph by including more equivalent programs') followed by
extraction (the process of searching the e-graph for an optimal pro-
gram). In particular, the expansion stage has not been feedback-
directed, i.e., the cost of candidate programs has only been used in
extraction, but that information has not been fed back in to guide
further e-graph expansion. A key contribution of our work is a
method for Iterative Contraction and Expansion on E-graphs
(ICEE). Because ICEE is feedback-directed, it enables us to effec-
tively explore the large combinatorial space of designs and their
corresponding fabrication plans. ICEE also uses feedback to prune
the least valuable parts of the e-graph during the search, keeping
its size manageable. Furthermore, these expansion and contraction
decisions are driven by a multi-objective problem that enables find-
ing a diverse set of points on the Pareto front.

We implemented our approach and compared it against prior
work and against results generated by carpentry experts. Our re-
sults show that ICEE is up to 17 times faster than prior approaches
while achieving similar results. In some cases, it is the only ap-
proach that successfully generates an optimal set of results due to
its efficiency in exploring large design spaces. We showcase how
our method can be applied to a variety of designs of different com-
plexity and show how our method is advantageous in diverse con-
texts. For example, we achieve 25% reduced material in one model,
60% reduced time in another, and 20% saved total cost in a third
when assuming a carpenter charges $40/h when compared to a
method that does not explore design variations.

2 RELATED WORK

Optimization for Design and Fabrication. Design for fabrication is
an exciting area of research that aims at automatically achiev-
ing desired properties while optimizing fabrication plans. Exam-
ples of recent work include the computational design of glass
facades [Gavriil et al. 2020], compliant mechanical systems [Tang
et al. 2020], barcode embeddings [Maia et al. 2019], and interlock-
ing assemblies [Cignoni et al. 2014; Hildebrand et al. 2013; Wang
et al. 2019], among many others [Bickel et al. 2018; Schwartzburg
and Pauly 2013]. Fabrication considerations are typically taken
into account as constraints during design optimization, but these
methods assume that there is an algorithm for generating one fab-
rication plan for a given design. To the best of our knowledge, no
prior work explores the multi-objective space of fabrication alter-
natives during design optimization.

There is also significant literature on fabrication plan optimiza-
tion for a given design under different constraints. Recent work in-
cludes optimization of composite molds for casting [Alderighi et al.
2019], tool paths for 3D printing [Etienne et al. 2019; Zhao et al.
2016], and decomposition for CNC milling [Mahdavi-Amiri et al.
2020; Yang et al. 2020]. While some of these methods minimize the

'n the programming languages literature, this is known as equality saturation.

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:3

distance to a target design under fabrication constraints [Duenser
et al. 2020; Zhang et al. 2019], none of them explores a space of
design modification to minimize fabrication cost.

In contrast, our work jointly explores the design and fabrication
space in the carpentry domain, searching for the Pareto-optimal
design variations that minimize multiple fabrication costs.

Design and Fabrication for Carpentry. Carpentry is a well-
studied domain in design and fabrication due to its wide applica-
tion scope. Prior work has investigated interactive and optimiza-
tion methods for carpentry design [Fu et al. 2015; Garg et al. 2016;
Koo etal. 2014; Song et al. 2017; Umetani et al. 2012]. There is also a
body of work on fabrication plan optimization [Koo et al. 2017; Lau
et al. 2011; Leen et al. 2019; Yang et al. 2015]. Closest to our work
is the system of Wu et al. [2019], which represents both carpentry
designs and fabrication plans as programs and introduces a com-
piler that optimizes fabrication plans for a single design. While our
work builds on the domain specific languages (DSLs) proposed
in that prior work, ours is centered on the fundamental problem of
design optimization under fabrication alternatives, which has not
been previously addressed.

Bi-Level Multi-Objective Optimization. Our problem and others
like it are bi-level, with a nested structure in which each design de-
termines a different space of feasible fabrication plans. The great-
est challenge in handling bi-level problems lies in the fact that the
lower level problem determines the feasible space of the upper-
level optimization problem. More background on bi-level optimiza-
tion can be found in the book by Dempe [2018], as well as review
articles by Lu et al. [2016] and Sinha et al. [2017].

Bi-level problems with multiple objectives can be even more
challenging to solve [Dempe 2018]. Some specific cases are solved
with classical approaches, such as numerical optimization [Eich-
felder 2010] and the e-constraint method [Shi and Xia 2001].
Heuristic-driven search techniques have been used to address bi-
level multi-objective problems, such as genetic algorithms [Yin
2000] and particle swarm optimization [Halter and Mostaghim
2006]. These methods apply a heuristic search to both levels in a
nested manner, searching over the upper level with NSGA-II oper-
ations, while evaluating each individual call in a low-level NSGA-
II process [Deb and Sinha 2009]. Our ICEE framework also ap-
plies a genetic algorithm during the search. Different from past
techniques, ICEE does not nest the two-level search but rather
reuses structure between different upper-level feasible points.
ICEE jointly explores both the design and fabrication spaces using
the BOP E-graph representation.

E-graphs. An e-graph is an efficient data structure for compactly
representing large sets of equivalent programs. E-graphs were orig-
inally developed for automated theorem proving [Nelson 1980],
and were first adapted for program optimization by Joshi et al.
[2002]. These ideas were further expanded to handle programs
with loops and conditionals [Tate et al. 2009] and applied to a va-
riety of domains for program optimization, synthesis, and equiva-
lence checking [Nandi et al. 2020; Panchekha et al. 2015; Premtoon
et al. 2020; Stepp et al. 2011; Wang et al. 2020; Willsey et al. 2021;
Wau et al. 2019].

Recently, e-graphs have been wused for optimizing de-
signs [Nandi et al. 2020], and also for optimizing fabrication
plans [Wu et al. 2019], but they have not been used to simulta-
neously optimize both designs and fabrication plans. Prior work
also does not explore feedback-driven e-graph expansion and
contraction for managing large optimization search spaces.

3 BACKGROUND

In this section, to increase the readability of the article and help
readers get necessary background knowledge earlier, we introduce
some mathematical preliminaries used in the rest of the article.

3.1 Multi-Objective Optimization

A multi-objective optimization problem is defined by a set of ob-
jectives f; : x — R that assign a real value to each point x € X in
the feasible search space X. We choose the convention that small
values of f;(x) are desirable for objective f;.

As these objectives as typically conflicting, our algorithm
searches for a diverse set of points that represent optimal trade-
offs, called Pareto optimal [Deb 2014]:

Definition 3.1 (Pareto Optimality). A point x € X is Pareto opti-
mal if there does not exist any x” € X so that fj(x) > fi(x’) for all
iand fj(x) > fi(x’) for at least one i.

We use F : x +— RN to denote the concatenation
(fi(x),..., fN(x)). Pareto optimal points are the solution to the
multi-objective optimization:

min F(x) s.t.x € X. (1)
X

The image of all Pareto-optimal points is called the Pareto front.

Non-Dominated Sorting. Genetic algorithms based on non-
dominated sorting are a classic approach to multi-objective opti-
mization [Deb and Jain 2013; Deb et al. 2002]. Sorting is the step of
genetic algorithms that select parent populations for crossover and
mutation. The key idea behind non-dominated sorting is that this
selection should be done based on proximity to the Pareto front.
These articles define the concept of Pareto layers, where layer 0 is
the Pareto front, and layer [is the Pareto front that would result
if all solutions from layers 0 to [— 1 are removed. When selecting
parent populations or when pruning children populations, solu-
tions in lower layers are added first, and when a layer can only be
added partially, elements of this layer are chosen to increase diver-
sity. Different variations of this method use different strategies for
diversity; we use NSGA-III [Deb and Jain 2013] in our work.

Hypervolume. Hypervolume [Auger et al. 2009] is a metric com-
monly used to compare two sets of image points during Pareto
front discovery. Intuitively, the hypervolume measures the region
dominated by a given reference point and therefore a larger hyper-
volume implies a better approximation of the Pareto front. To cal-
culate the hypervolume, we draw the smallest rectangular prism
(axis-aligned, as per the L! norm) between some reference point
and each point on the pareto front. We then union the volume of
each shape to calculate the hypervolume.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

32:4 « H.Zhaoetal.

3.2 Bi-level Multi-Objective Optimization

Given a design space D that defines possible variations of a carpen-
try model, our goal is to find a design d € D and a corresponding
fabrication plan p € ¢ that minimizes a vector of conflicting ob-
jectives, where P is the space of fabrication plans corresponding
to design d. This setup yields the following multi-objective opti-
mization problem:

min F(d,p) st. de D, pe P,

p,

where ¢ defines the space of all possible plans for fabrication
the design d. Generally, our problem can be expressed as a bi-
level multi-objective optimization that searches across designs
to find those with the best fabrication costs, and requires opti-
mizing the fabrication for each design during this exploration
[Lu et al. 2016]:

mdinF(d,p) st. deD, p= argrr})inF(d,p),

where arg min refers to Pareto-optimal solutions to the multi-
objective optimization problem.

A naive solution to this bi-level problem would be to search over
the design space D using a standard multi-objective optimization
method, while solving the nested optimization problem to find the
fabrication plans given a design at each iteration. Given the com-
binatorial nature of our domain, this would be prohibitively slow,
which motivates our proposed solution.

3.3 Equivalence Graphs (E-graphs)

Typically, programs (often referred to as terms) are viewed as
tree-like structures containing smaller sub-terms. For example, the
term 3 X 2 has the operator X at its “root” and two sub-terms, 3
and 2, each of which has no sub-terms. Terms can be expressed
in multiple syntactically different ways. For example, in the lan-
guage of arithmetic, the term 3 X 2 is semantically equivalent to
3 + 3, but they are syntactically different. Naively computing and
storing all semantically equivalent but syntactically different vari-
ants of the a term requires exponential time and memory. For a
large program, this makes searching the space of equivalent terms
intractable.

E-graphs [Nelson 1980] are designed to address this challenge—
an e-graph is a data structure that represents many equivalent
terms efficiently by sharing sub-terms whenever possible. An e-
graph not only stores a large set of terms, but it represents an equiv-
alence relation over those terms, i.e., it partitions the set of terms
into equivalence classes, or e-classes, each of which contains seman-
tically equivalent but syntactically distinct terms. In Section 4.2, we
show how to express carpentry designs in a way that captures the
benefits of the e-graph.

Definition 3.2 (E-graph). An e-graph is a set of equivalence
classes or e-classes. An e-class is a set of equivalent e-nodes. An
e-node is an operator from the given language paired with some
e-class children, ie., f(ci,...,cp) is an e-node where f is an
operator and each c; is an e-class that is a child of this e-node.
An e-node may have no children, in which case we call it a
leaf. An e-graph represents an equivalence relation over terms.
Representation is defined recursively:

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

Fig. 2. An example e-graph. E-classes (dotted boxes labeled by letters) con-
tain equivalent e-nodes (solid boxed) which refer to children e-classes (ar-
rows). The e-class (c) contains one leaf e-node, 3, and it represents one
term, 3. The e-class (b) contains two e-nodes, (c) + (c) and (c) * (d), and it
represents two terms: 3+3 and 3% 2. Although the e-class (a) only contains
one e-node, it represents 4 terms: (3+3) +(2+2), (3%2)+(2+2), (3+3) +4,
and (3 % 2) + 4. If + is cheaper than =, then (3 + 3) + 4 is the cheapest term
represented by e-class (a).

0 f==) ey) |
C 13 AP (O OXE |
C] A1 {1 O 9 o J e 2 — 1 ; 7 | i
___________ B e o - —
[820 " A g 141 { 2 N— O | 65
B
C 141 L5] G 11 [7)
[5 3 5 | S 2 i 8 | 3 | G| O3 9 7| O

Fig. 3. Example of three different design variations of a model and cor-
responding fabrication plans. Design variations determine different ways
to decompose a 3D model into a set of parts. Fabrication plans define
how these parts are arranged in pieces of stock material and the cut order
(illustrated by the numbers along with each cut).

— An e-graph represents a term if any of its e-classes do.

— An e-class represents a term if any of its e-nodes do. All terms
represented by e-nodes in the same e-class are equivalent.

— An e-node f(c1,...,cn) represents a term f(t1,...,t,) if
each e-class ¢; represents term t;. A leaf e-node g represents
just that term g.

Figure 2 shows an example of an e-graph and representation.
Note how the e-graph maximizes sharing even across syntactically
distinct, semantically equivalent terms. When adding e-nodes
or combining e-classes, the e-graph automatically maintains
this maximal sharing property, using existing e-nodes whenever
possible.

4 OPTIMIZATION ALGORITHM

Our algorithm takes as input a carpentry design with a discrete set
D of possible design variations. Design variations determine dif-
ferent ways to decompose a 3D model into a set of fabricable parts,
as shown in Figures 3 and 4. These can be manually or automati-
cally generated (see Section 1.1 of the supplemental material).
Our goal is to find Pareto-optimal solutions that minimize fab-
rication cost, where each solution is a pair of design variation and
fabrication plan. Similar to prior work [Wu et al. 2019], we mea-
sure cost in terms of material usage (f¢), cutting precision (fp),
and fabrication time (f;). Section 1.3 of the supplemental material
describes how these metrics are computed for this work.

1.3

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:5

d1 d2
Fig. 4. Example of a space of design variations, D. Each of the four connec-
tors can have three different connecting variations, resulting in 81 design
variations. Note that some of the different design variations may use the

same parts (as d1, d2), and will be treated as redundant during our opti-
mization. This model produces 13 unique bags of parts.

4.1 Motivation and Insights

Given an algorithm for finding the Pareto-optimal fabrication
plans for a given design (e.g., the one proposed by Wu et al. [2019]),
a brute force method would simply find the Pareto-optimal solu-
tions for each of the possible design variations d € D and take the
dominant ones to form the Pareto front of the combined design/
fabrication space. Since design variations can produce an exponen-
tially large space of designs D, this approach would be intractable
for complex models. An alternative approach could use a discrete
optimization algorithm to explore the design space (e.g., hill climb-
ing). This approach would still need to compute the Pareto-optimal
fabrication plans for each design explored in every iteration, which
can expensive for complex design variants (e.g., it takes 8-10 min-
utes to compute Pareto-optimal fabrication plans for a single de-
sign variation of the chair model in Figure 1 using the approach of
Wu et al. [2019]).
We address these challenges with two key insights:

(1) Design variants will share common sub-parts (both within
a single variant and across different variants). As shown in
Figure 3, even in a design where no two parts are the same,
there is significant overlap across design variations. Exploit-
ing this sharing can prevent recomputing the fabrication cost
from scratch for every design variation. We propose using an
e-graph to capture this sharing when (sub-)designs have the
same BOP; we call this e-graph the BOP E-graph.

(2) The space of design variants is too large to exhaustively
explore, and even a single variant may have many Pareto-
optimal fabrication plans. We propose using the BOP E-graph
to guide the exploration in an incremental manner, with a
new technique called ICEE that jointly explores the design
and fabrication plan spaces.

4.2 Bag of Parts (BOP) E-graph

Our algorithm selects a Pareto-optimal set of fabrication plans,
each of which will produce a design variation of the given model.
A fabrication plan consists of four increasingly detailed things:

(1) ABOP, a bag? (ak.a. multiset) of atomic parts that compose
the model.

(2) An assignment that maps those parts to individual pieces of
stock material (see the parts in stock pieces in Figure 3).

2A bag or multiset is an unordered set with multiplicity, i.e. it may contain the same
item multiple times. We will use the terms interchangeably.

(3) A packing for each piece of stock in the assignment that
dictates how those parts are arranged in that stock (see the
layout on the stock pieces in Figure 3).

(4) A cutting order for each packing that specifies the order and
the tool (chopsaw, tracksaw, etc.) used to cut the stock into
the parts (see the numbers indicating the order in Figure 3).

We say that an arrangement is items 1-3: a BOP assigned to and
packed within pieces of stock material, but without cutting order
decided. We can create a language to describe arrangements; a
term in the arrangement language is one of the following:

— An atomic node is a childless operator that represents a BOP
packed into a single piece of stock. For example, {0, 0, A},
maps two squares and one triangle all to the same piece of
stock of type b using a packing p.

— A union node takes two- child arrangements and composes
them into a single arrangement. The following arrangement
is a union node of two atomic nodes: {0, Olp,p U ia)p, - 1t
packs two squares into the stock of type b using packing p1,
and it packs a triangle into a different piece of stock of the
same type b using packing ps.

To put arrangements into an e-graph, we must define the notion
of equivalence that the e-graph uses to determine which e-nodes
go in the same e-class. The more flexible this notion is (i.e., the
larger the equivalence relation), the more sharing the e-graph can
capture.

To maximize sharing, we say two arrangements are equivalent if
they use the same BOP, even if those parts are assigned to different
stock or packed differently. For example, {0,0},, j is equivalent
to {O,0}p,,c even though they use different kinds of stock, and
{O, o, A}p%b is equivalent to {0, A}p4,b U {D}p5,b even though the
former uses one piece of b stock and the latter uses two.

Given our arrangement language and the BOP notion of equiv-
alence, we can now describe the central data structure of our al-
gorithm, the BOP E-graph. Recall from Section 3.3 that e-nodes
within an e-graph have e-class children rather than e-node chil-
dren. So, viewing our arrangement language at the e-graph level,
union e-nodes take two e-classes as children. All e-nodes in the
same e-class are equivalent, i.e., they represent terms that use the
same BOP but that arrange those parts differently into stock.

Figure 5 gives two example design variations and a BOP E-graph
that captures a common sub-arrangement between the two. The
e-classes E1 and E2 represent terms that correspond to the two
box designs, and E4 captures ways to arrange the y and z parts
which the variants share. The design variant including part w also
captures sharing with itself: e-class E5 reuses the arrangement in
e-class E9.

Note that arrangements and the BOP E-graph do not mention
designs. We do not “store” designs in the e-graph, we just need to
remember which e-classes represent bags of parts that correspond
to designs that we are interested in. This can be done outside the
e-graph with a mapping from designs to e-classes. Many designs
(especially symmetric ones) may have the same BOP. We call an
e-class that is associated with a design a root e-class, and we call a
term represented by a root e-class a root term. The BOP E-graph
itself does not handle root vs. non-root e-classes or terms differ-
ently, these are only used by the remainder of the algorithm to

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

0@ I TG

Fig. 5. Two variants (a) of a box design encoded in one BOP E-graph
(b). The bold edges show a root term that requires three atomic pack-
ings (c). The BOP E-graph encodes multiple arrangements for both de-
sign variants. E-classes are drawn as dotted boxes and annotated with the
BOP represented by that e-class. (Only the e-nodes are semantically in
the e-graph; the name and BOP are just visual aides.) E-classes E1 and
E2 are root e-classes since they represent the BOP required by the de-
sign variants. Union and atomic e-nodes are shown as squares with “U”s
or circles with “A”s, respectively. Atomic e-nodes correspond to packings
of parts within a piece of stock (c). An example root term in the BOP
E-graph is bolded; using the syntax from Section 4.2, this is the term
{x, y}A4,]0ng U {y}Ag,short U {Z}Alg,short~

3226 « H.Zhaoetal
y
z X
y
w
w
y : G e i ?EQ:(W}E
—Y ®

remember which arrangements correspond to design variants. The
BOP E-graph will maximize sharing across design variations and
arrangements since it makes no distinction between the two.

4.3 lterative Contraction and Extension on E-graphs
(ICEE)

4.3.1 Overview. ICEE takes a feasible design space D as input,
and outputs a Pareto front where each solution s represents a (de-
sign, fabrication) pair. An overview of this algorithm is shown
in Figure 6. The pseudocode is included in the supplemental
material.

The initialization step selects a small subset of design variants
from D (Section 4.3.2) and then generates a small number of fab-
rication arrangements for each one (Section 4.3.3). All of these are
added to the BOP E-graph, maintaining the property of maximal
sharing, as described above. ICEE then applies the extraction al-
gorithm (Section 4.3.4) to generate a Pareto front from the current
BOP E-graph. This process will compute many different solutions s
and their fabrication costs F(s) = (fm(s), fp(s), ft(s)), all of which
are stored in the solution set S.

The resulting Pareto front is used to compute ranking scores for
each e-class in the BOP E-graph; the ranking score measures how
often this BOP is used in Pareto-optimal solutions and how many
fabrication variations have been explored for this BOP. Using these
scores, ICEE contracts the BOP E-graph by pruning e-classes that
have been sufficiently explored but still do not contribute to Pareto-
optimal solutions (Section 4.3.5).

Having pruned the e-graph of the less relevant e-classes, ICEE
then expands the BOP E-graph in two ways (Section 4.3.6).
First, it suggests more design variations based on the extracted
Pareto-Optimal designs. Second, it generates more fabrication ar-
rangements for both the newly generated design variations and

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

some of the previously existing e-classes. The ranking scores are
used to select e-classes for expansion.

ICEE then extracts the new Pareto front from the updated BOP
E-graph and repeats the contraction and expansion steps until the
following termination criteria are met: (1) There is no hypervol-
ume improvement within t; iterations, or (2) We exceed mt, it-
erations. Additionally, we set a timeout T beyond which we no
longer change the BOP E-graph, but continue to extract based on
crossover and mutation until one of the termination criteria is met.
In our experiments, we set t; = 10, mty = 200, and T = 4 hours.

4.3.2 Initial Generation of Design Variants. We bootstrap our
search with the observation that design variations with more iden-
tical parts tend to be cheaper to fabricate because less time is spent
setting up fabrication processes. Therefore, instead of initializing
the BOP E-graph with K; designs randomly selected from D, we
randomly select up to 10° designs and select the top K; designs
from this set that have a maximal number of identical parts.

4.3.3 Fabrication Arrangements Generation. Again, instead of
randomly generating Ky arrangement variations for a given de-
sign, we use heuristics; namely, that (1) We can minimize the num-
ber of cuts by stacking and aligning material to cut multiple parts
with a single cut, and (2) We can minimize the material cost by
packing as many parts as possible to a single stock. Since a sim-
ilar method for generating arrangement variations has been pre-
viously proposed by Wu et al. [2019], we leave a detailed discus-
sion of the algorithm for supplemental material (Section 1.2). We
note that the key difference between our method and the prior
heuristic-driven algorithm is that we incorporate storage and di-
rect control schemes that enable the method to output Ky varia-
tions that are different from the ones generated during previous
iterations of ICEE. This is essential to enable incremental expan-
sion of the BOP E-graph without restoring variations that have
already been pruned in the previous contraction steps.

4.3.4 Pareto Front Extraction. In e-graph parlance, extraction is
the process of selecting the “best” represented term from an e-
graph according to some (typically single-objective) cost functions.
One way to view extraction is that it simply chooses which e-node
should be the canonical representative of each e-class; once that is
done, each e-class represents a single term. Since our cost function
is multi-objective, we must instead extract a set of terms (arrange-
ments) from the BOP E-graph that forms a Pareto front.

We use a genetic algorithm [Deb and Jain 2013] to extract terms
from the BOP E-graph. The population size is set to Npop. The
genome is essentially a list of integers, one per e-class, that speci-
fies which e-node is the representative. Since the BOP E-graph may
have multiple root e-classes (corresponding to multiple design vari-
ations), we combine the genes for all the root e-classes, only pick-
ing a single e-node among all of them. In effect, this means the
genome defines both a design variation and the arrangement for
that design.

For example, consider the bold term within the BOP E-graph in
Figure 5. The genome for that term is as follows, where * could be
any integer since that e-class is not used by the term:

Ey,E; E3 E4 Es E¢ E; Eg Eo
0 1 0 * * 0 0 %

1.2

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:7
E‘Emmg im% E1{] V1Y) 21} E2{[¥] (2] W) W)} E‘ﬁﬂmg E1(X Y E) Eo{ (Y] @ @ [Lajuluisien
L&) [@& [\] &
N/ AN N
E3([X] 7)) E4(V] @) ES:{ W] W) E3:{ [X]]} E4:([YAE]} ES:{w] W]} E3{ & [E4(T @)} E3{ X 1)) E4{ V]]} E104(T) [T]} E10([8] (8]}
L&
YooK CIEN L 2GS\ LY Voo K N LR r.¥
E6:{ [X] } ET{ ¥} E8{ 2]} Eo{ W]} E6:((X1} E7([{} E8([Z]} E9{ W] } E6:{ [X] } ET{ ¥} Es{ 2} E6:([X]) E7{ 7]} Es{)
:] initialize extrLctA BOP Egraph| contract | compressed |8XPaNd | Expanded
D | BOP Egraph 7| e > BOP Egraph >! BOP Egraph
@ ® A © extract]
ICEE loop Material

Fig. 6. Algorithm overview used the example in Figure 5. The first step initializes a BOP E-graph (Sections 4.3.2 and 4.3.3) with several design variants and
a small number of fabrication arrangements (a). U and A represent union and atomic e-nodes respectively. As part of the ICEE loop, the algorithm extracts
a Pareto Front (Section 4.3.4), which is used to score the e-classes in the BOP E-graph (b). For example, the gray e-class containing a “U” and an “A” e-node
indicates a low score, i.e., the e-class did not contribute to Pareto-optimal solutions. The BOP E-graph is then contracted (Section 4.3.5) by removing the
low-scored e-classes (and their parent e-nodes) to get a compressed BOP E-graph (c). As described in Section 4.3.6, this contracted BOP E-graph is then
further expanded (d) by exploring more design variants and fabrication arrangements. The algorithm exits the loop when the termination conditions are

reached, returning the final Pareto Front (e).

The root e-classes E1 and E; share a single integer 0, meaning that
the genome chooses the Oth e-node across both e-classes, and that
it uses the first of the two design variants. Since this encoding boils
down to a list of integers, which is valid as long as each integer cor-
responds to an e-node in that e-class, we can use simple mutation
and single-point crossover operations.

A term does not completely determine a fabrication plan; it only
specifies the arrangement. We need to additionally compute the
cutting order for a given term to define a solution s and then eval-
uate the fabrication costs. We observe that the material cost does
not depend on the cutting order and that precision and fabrication
costs strongly correlate once the arrangement is fixed. This is not
surprising since cutting orders that minimize set-ups will jointly
reduce time and precision error. Given this observation, we can
compute two solutions for each term, using two single-objective
optimizations for computing cutting order: one that minimizes pre-
cision, and the other fabrication time.

We use two strategies to speed up these optimizations: (1) stor-
ing computed cutting orders in atomic e-nodes that will be shared
across many terms and (2) a branch and bound technique. The op-
timization works as follows. Given a term, we first compute the
optimal plans for the atomic e-nodes that have not been previously
optimized. For each such e-node, we try to generate maximal P dif-
ferent orders of cuts, then extract the optimal plans with [Wu et al.
2019] method. We use this result to compute an upper and a lower
bound for the term. If the lower bound is not dominated by the
Pareto front of all computed solutions S, we run an optimization
that uses the upper bound as a starting point (see Section 1.4 of the
supplemental material for details).

We again terminate the algorithm if there is no hypervolume
improvement within tp iterations, or if we exceed mity iterations.
In our experiments, we set t, = 20 and mt, = 200 and set the
probability of crossover (mcp) and mutation (mmy) are set to be
0.95, 0.8 respectively.

4.3.5 BOP E-graph Contraction. As the algorithm proceeds,
BOP E-graph contraction keeps the data structure from growing
too large. To contract the BOP E-graph, we search for e-classes
that represent bags of parts that have been sufficiently explored by
the algorithm but are not present in Pareto-optimal designs. This
indicates that we have already discovered the best way to fabri-
cate these bags of parts but they still do not contribute to Pareto
optimal solutions; these e-classes are then deleted.

To measure how much an e-class has been explored, we first
compute how many variations of fabrication arrangements have
been encoded in the BOP E-graph. This number is stored over the e-
graph and updated after each expansion step to ensure consistency
following contraction steps. The exploration score, Eg¢ore, is then
defined as this value divided by the number of possible fabrication
arrangements for an e-class, which we approximate by the number
of parts in the e-class multiplied by the number of orientations of
each part that can be assigned to the stock lumber.

The impact of an e-class, Iscore, is measured based on how often
it is used in the set of solutions in the current Pareto front. We
use the assignment of solutions s to layers determined by the non-
dominated sorting Section (3.1) to compute Iscore for a given e-
class. We initialize a Is¢ore with value 0 and increment it by 10M-1
every time this e-class is used in a solution from layer I/, where M
is the total number of valid layers.

We normalize all computed exploration and impact scores to be
between 0 and one and then assign the following pruning score to
each e-class:

Pscore =W+ Iscore + (1= w) - (1 = Escore), w € [0.0,1.0],

where the weight w is chosen to trade-off between exploration
and impact. If the Ps¢ore is smaller than the pruning rate, Prgze,
the e-class is removed along with any e-nodes pointing to this e-
class (i.e. parent e-nodes). We set w and Py 4¢ to 0.7 and 0.3 in our
implementation.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

1.4

32:8 « H.Zhaoetal.

Table 1. Statistics for Each Input Model, Showing the Complexity
in the Number of Parts (1), Number of Connectors (#C), Number of
Connecting Variations (#CV), and Number of Design Variations
That Define Unique BOP D

Model np #C | #CV | D] Model np #C | #CV | D]
Frame 4 4 22 13 A-Chair 18 3 6 4
L-Frame 6 8 16 65 F-Pot 8 1 4 4
A-Bookcase 12 6 16 192 Z-Table 15 6 16 63
S-Chair 14 14 32 66438 Loom 18 4 10 36
Table 12 10 24 1140 J-Gym 23 8 16 54
F-Cube 12 8 23 5 D-Chair 17 10 22 2280
Window 12 16 32 10463 Bookcase 15 22 44 65536
Bench 29 6 14 57 Dresser 10 10 25 480

4.3.6 BOP E-graph Expansion. We expand the BOP E-graph by
first generating new design variations and then by generating fab-
rication arrangements for both the existing and newly generated
design.

We generate new design variations using a single step of a ge-
netic algorithm that operates over the design space. The probabil-
ity of crossover (mcy) and mutation (mmy) are set to be 0.95, 0.8 re-
spectively. We select the parent design variations from S based on
the non-dominated sorting technique (Section 3.1). Since many so-
lutions in § can correspond to the same design, we assign designs
to the lowest layer that includes that design. We then generate new
design variations with crossover and mutation operations. We use
an integer vector encoding for each design. This time, the vector
indexes the joint variations, e.g., for the designs shown in Figure 4,
di =[0,2,1,0],d2 = [1,0,0, 2]. We get K, - K ; design variations by
applying K, times of the single-step genetic algorithm. Then we
apply the same heuristic done during initialization (Section 4.3.2),
selecting the top K,,4, K,,q4 € [0, kg]. Finally, the resulting K,,; de-
signs are included in the BOP E-graph. We set Kj;; = 10 in our
implementation.

We generate fabrication arrangements for each of the new de-
sign variations using the algorithm described in Section 4.3.3, and
they are added to the BOP E-graph maintaining the maximal shar-
ing property. We further generate fabrication arrangements for
existing design variations, using a similar scoring function used
during contraction. This is done in two steps. First, we select root
e-classes to expand based only on their impact score; namely, we
take the top K; root e-classes using non-dominated sorting. We
then proceed to generate Ky X K4 fabrication arrangements using
the algorithm described in Section 4.3.3). However, instead of gen-
erating the same number of fabrication arrangements variations
for every selected root e-class, the number is adaptive to their prun-
ing scores Ps¢ore (as defined in Section 4.3.5).

5 RESULTS AND DISCUSSION

In order to gauge the utility of our tool, we want to answer the
following questions:

(1) How much does searching the design space with the fabrica-
tion space improve generated fabrication plans?

(2) How does our tool compare with domain experts who are
asked to consider different design variations?

(3) How does our tool’s performance compare to a baseline naive
approach?

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

ujunn|

Frame Long Frame (L-l;rame)

La
Vs

Window

Dining room chair
(D-Chair)

\ \
\

Art bookcase
4 (A-Bookcase)
\

‘0

Adirondack chair|
(A-Chair)

Simple chair ||
(S-Chair) /s 4

.

/
il

Dresser

(F-Pot)

Fig. 7. Models used for all experiments in Section 5. Brown is used to indi-
cate the models which are only made from 1D sequential cuts of lumber.
Gray is for only from 2D partitioning of sheets. Orange is for both using
1D sequential cuts of lumber and 2D partitioning of sheets.

5.1 Models

We evaluate our method using the examples in Figure 7. Statistics
for each model are shown in Table 1. These models vary widely
in visual complexity and materials used—some are made from 1D
sequential cuts on lumber, where others require 2D partitioning
of sheets. Note the complexity of the search is not inherent to
the visual complexity of the model, rather, it is determined by the
number of connecting variations and the number of arrangements,
which defines the size of the design space and the space of fabrica-
tion plans, respectively. For example, the Adirondack chair is more
visually complex than the simple chair in Figure 7, but because it
has about 5,000 times fewer design variations, it converges much
more quickly. Models of Art bookcase, Dining room chair, F-Pot,
Z-Table, Bench, and Adirondack chair are taken from [Wu et al.
2019].

5.2 Running environment

The parameters used in our ICEE algorithm are scaled based on
the complexity of each model, measured in terms of the number
of parts n, and the size of the design space |D|. We further in-
troduce a single tuning parameter € [0.0,1.0], which allows
us to trade-off between exploring more design variations (smaller
values of) versus exploring more fabrication plans for given de-
sign variations (larger values). For all our experiments, we set « to
the default value of 0.75. The ICEE parameters are set as follows:
Kg = 2 Mogyg lDH’NPOP = 4'Kd’Kf = ﬁ'nP’Knd = (1.0-a)-K4l,
and P = 2- (f —2), tg = 10, mty = 200, mcg = 0.95, mmg = 0.80,
T = 4 hours, tp = 20, mty = 200, mep = 0.95, mmy = 0.80, w = 0.7,
Prate = 0.3and K, = 10, where § = [44-a” +2]. A table S1 of the
supplemental material lists all parameters used in our algorithm.

We report the running times of our algorithm in Table 2 for the
models in Figure 7. The above times are measured on a MAC laptop
computer with 16 GB RAM and a 2.3 GHz 8-Core Intel Core i9
CPU. More discussion of the running time is in the supplemental
material.

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:9

Table 2. Some Statistics and Running Times for Our ICEE Algorithm

Model #0 | #Iter | #EDV | #Arr | #PDV | CEt(m) | Et(m) | Total(m)
Frame 2 11 8 181 3 0.7 2.1 2.8
L-Frame 2 24 19 2,818 3 2.1 6.1 8.2
A-Bookcase 3 25 25 28,700 | 3 20.5 228.6 | 249.0
S-Chair 2 15 136 35,656 | 6 27.6 122.0 | 149.6
Table 2 18 50 9,346 9 5.9 34.9 40.8
F-Cube 2 23 4 3,499 3 1.4 4.0 5.5
Window 2 23 116 81,026 | 4 32.8 98.9 131.7
Bench 2 25 16 37,436 |3 30.3 215.1 | 245.4
A-Chair 2 28 4 14,440 |3 3.1 9.6 12.7
F-Pot 3 14 3 185 2 1.7 13.0 14.7
Z-Table 3 70 41 336,091 | 6 17.1 71.1 88.2
Loom 3 21 10 1,812 5 3.1 74.6 77.7
J-Gym 3 46 18 286,239 | 3 37.0 72.0 109.0
D-Chair 2 18 40 15,054 | 7 27.7 228.8 | 256.5
Bookcase 3 15 32 34,756 |1 39.4 336.8 | 376.3
Dresser 3 20 44 22,209 |5 14.1 241.2 | 2554

For each model, we first report the number of targeting objectives (#0) where 2 indicates material usage
(fc) and fabrication time (f), and 3 indicates all of the three objectives including cutting precision (fp).
We also report the number of iterations (#Iter), explored design variations (EDV) and arrangements (#Arr),
and Pareto front design variations (#PDV). We report the running time of BOP E-graph contraction and
expansion (CEt), and Pareto front extraction (Et), as well as the total time. All running times are in minutes.

5.3 Benefits of Design Exploration

To demonstrate the benefit of simultaneous exploration of the de-
sign variation and fabrication plan spaces, we compare our tool
against optimizing the fabrication plan for a single design.

Figure 8 shows the comparison between our pipeline and the
Carpentry Compiler pipeline [Wu et al. 2019], which only consid-
ers a single design. The parameter setting of their pipeline and
additional results can be found in Section 2 of the supplemental
material. We explore the trade-offs for fabrication time and mate-
rial usage for the designs where all cuts can be executed with stan-
dard setups (these are considered to have no precision error) and
include a third objective of precision error for the models where
that is not possible. The Pareto fronts across designs generated by
our tool cover a larger space and many of our solutions dominate
those from previous work.

Exploring design variations enables better coverage of the
Pareto front, which enables finding better trade-offs. These trade-
offs are lower-cost overall, cover more of the extrema, and are more
densely available. For example, a hobbyist may want to minimize
material cost independent of time, as the fabrication process is en-
joyable, and they consider it to have no cost. Material cost is hard to
save, but our exploration of design variations enable solutions that
reduce material cost by 7% in the Loom, 7% in the Jungle Gym, 15%
in the Frame, and 25% in the Bookcase. On the other hand, some-
one with free access to reclaimed wood may only care about the
total fabrication time. Our approach enables solutions that reduce
fabrication time by 60%—two models saved between 50%—60%,
three between 30%-35%, and four between 20%-30%, for example—
a huge time-saving. If creating a very precise model is impera-
tive, and a user would take great care to manufacture it exactly,
then for four models, we find solutions that reduce error by 61%—
77%. The detailed data are listed in Table S6 of the supplemental
material.

Some examples don’t lie at the extrema: businesses often need
to find a balance between the cost of materials, time spent on a
project, and overall project quality, and the particular trade-off
will depend on their accounting needs. Our method enables find-
ing solutions with better trade-offs. Concretely, consider a car-
penter charging $40/h. When scalarizing our multi-objective func-
tion into this single objective of money, we have several examples

where the lowest cost on our Pareto front is 5%-8% cheaper than
the lowest cost on the baseline Pareto front, such as the Z-Table,
Flowerpot, Jungle Gym, Dresser, Bookcase, and Art Bookcase. The
window and frame have cost savings of 12% and 20%, respectively.
Though a cost reduction of several percent might appear insignif-
icant, in production at scale, it represents thousands of dollars po-
tentially saved. This scalarization function is just one way for a
user to judge the trade-off between different aspects of the multi-
objective function. In reality, the user probably has some notion
of what trade-off would be ideal for their purposes, and will use
the pareto front to represent the full space of options and make
an informed choice. This scalarized tradeoft is further examined in
Table S8 of the supplemental material.

Figure 9 highlights how exploring design variations generates
fabrication plans that can dominate those generated from no
design variation exploration. Figure 10 then demonstrates how
design variations enable diverse trade-offs that save on different
costs.

5.4 Comparison with Experts

For each model, we asked carpentry experts to generate design
variations and fabrication plans. The resulting points are plotted as
diamonds in Figure 8. Since experts produce each solution by hand,
they produced Pareto fronts with many fewer solutions than our
tool. For 14 of 16 models (except the Loom and Dresser models), so-
lutions generated by our tool dominate the expert solutions. This
suggests that, generally, although expert plans seem sensible, our
tool generates better output thanks to its ability to generate more
design variations and fabrication plans, including potentially un-
intuitive packing or cutting orders, and evaluate them much more
quickly than a human.

5.5 Performance Evaluation

To test whether the BOP E-graph’s sharing is important for our
tool’s performance, we compare against a nested-optimization
pipeline built on the Carpentry Compiler [Wu et al. 2019]. The
baseline approach invokes the Carpentry Compiler pipeline on
each design variant that our tool explores, and then it takes the
Pareto front across all design variations.

We choose five models of varying complexity to evaluate per-
formance and show result in Table 3. We tuned the parameters
of the baseline method so we could achieve results that were as
close as possible, if not qualitatively the same (when the baseline
method ran to completion). Full results are available in the supple-
mental material (Table S7 and Figure S1). This indicates that our
co-optimization approach yields similar results to the nested ap-
proach over the same space. When it comes to performance, our
approach is about one order of magnitude faster. We attribute this
speedup to the sharing captured by the BOP E-graph; we only had
to evaluate common sub-designs and sub-fabrication-plans one
time, whereas the baseline shared no work across its different in-
vocations for each design variant.

5.6 Fabricated Results

We validated our pipeline by physically constructing some of the
models according to the design variation-fabrication plan pairs
generated by our tool. Figure 11 shows the results.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

32:10 « H.Zhaoetal.
g, =) g ol Table
£ ° E.lo
=, B
o (@ a 10 %
=2 z W o :
9 10 20 25 30 35 40
Material Material
J-Gym
— =)
=
£ a
S/t o B0
' zPrcciAsi(m !
=
S
% %%.
£ | mpmemine oy o
SRR
Y w0
E| . ®apg o oo
T Ny
- LY
1o £, LY
atersy L
A-Bookcase ateria
ETT
Sw Bg
S ! ngpn ™
G
o
T Soos o
5 8 00 0o o
ZolymodBoe ©
s
27l
Eoleks
=} g
= q:h &
o Material '
O No design exploration > Expert results bt

Dresser

g Window Y © A-Chair
g |a® Ex
£ 8% o F
s"| e mg, P g ooy,
. a
i o o ¢ g] = " oy n
20 25 30 35 40 45 35 40 45 50 55
Material Material
Bookcase
=
z
=
5.

Precision

Precision

. R

a0 3 E) 100

Fab. Time

)
Emn?
1%
. R
oo
€5 o oo
o w10 1o

120 Material

Precision

o

o T

20 T w0 0

Fab. Time

.'7 'Egn g Bio

bl 1)

EY 160

I\jl)ateriz:ul
@ Pareto fronts of our method
Pareto fronts of explored designs of our method

Fig. 8. Pareto fronts are computed from our pipeline with design optimization as colored dots. Each color corresponds to a different design. The gray dots
indicate the Pareto fronts of all explored design variations. These are compared against Pareto fronts computed without design optimization (fabrication
optimization only, using the original model as the input design) as squares, and expert fabrication plans as diamonds. Often, fabrication plans from a design
variant are more optimal than those generated from an input design. For the unit of objective metrics, material usage (fc) is in dollars, cutting precision (f,)
is in inches, and fabrication time (f;) is in minutes. Some (design, fabrication plan) pairs indicated with capital letters are visualized in Figures 9 and 10.

6 DISCUSSION
6.1 Multi-Materials and Cutting Tools

Mechanical or aesthetic reasons might motivate designers to com-
bine multiple materials, such as different types of wood, or wood
and metal, in one model. Adding new materials to our approach in-
volves almost no implementation overhead: we must select which
cutting tools are appropriate, and accommodate the material’s
costs into our metrics. Then, we simply need to indicate which
material a given part is made of, exactly the same way we desig-
nate whether parts belong on 1D lumber or 2D stock. As shown in
Figure 12, we have created a mixed-material model to showcase
our ability to handle this added design complexity. The loom is
made of two different types of wood as well as one kind of metal.
All parts are optimized in the same e-graph and treated identically
to the base implementation. We describe the cost metrics for dif-
ferent materials in the supplemental material (Section 1.3.1).

6.2 Objectives

Our method also naturally extends to other objective functions. We
show one example in Figure 13, where we consider stability as an

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

Table 3. Results of the Performance Validation Experiment

Time (min)
Model 1D #EDV Ours Baseline
Frame 13 8 2.8 6.5
Jungle Gym 54 18 109.0 761.2
Long frame 65 19 8.2 59.7
Table 1140 59 40.8 612.8
Window 10463 116 131.7 2050.0

“Ours” indicates the ICEE algorithm of this article. “Baseline” indicates extracting the Pareto front
fabrication plans for each design variation explored by our method independently with the
Carpentry Compiler pipeline [Wu et al. 2019]. The size of design space || and the number of
explored design variations (EDV) are also reported. Our method and the baseline method produce
two Pareto fronts which are indistinguishable. This conclusion is not shown here; direct
comparisons of hypervolume can be non-intuitive due to the scale and how hypervolume is
measured. Please refer to the supplemental material (Figure S1), which contains plots comparing the
results of the two methods. Even with identical results, our time improvement is significant.

additional objective which we calculate with physical simulation.
Notably, stability is invariant to the fabrication plan, and depends
solely on the design itself, so it only needs to be measured once,
at the root node. However, two designs can have different stability
costs but share the same BOP. Figure 13 (a) and (b), exhibits one
BOP which captures two different designs.

In this example, since the other metrics (time and material
cost) do not exhibit this dependency, we can simply assign to the

1.3.1

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:11
[= |
) = = |
| |]
) [I |

[$12.0, 1.98mins]

FIFI
P el [

® [$12.0, 1.37mins]

[$25.5, 0.16inches, 15.38mins]

@5&
%

NG :

@g
i

(2) [$24.0, 0.15inches, 10.52mins]

@ Bandsaw Drill ® Tracksaw @ Chopsaw ® Jigsaw

Fig. 9. Two examples where searching the design space revealed fabrica-
tion plans that completely dominated the fabrication plans generated for
the input design. With the design variations, our pipeline could search for
a design variation of the frame, which turns all angled cutting to verti-
cal. With Design B, we find a fabrication plan which takes less time than
the least time-consuming plan A of the input design. Similarly, we show
two fabrication plans of the A-Bookcase model where the design and fab-
rication plan B dominate the input design A. The fabrication costs are indi-
cated in the figure with the order of material cost, precision error, and fabri-
cation time. The cutting orders are labeled with colored dots and numbers,
where colors indicate selected cutting tools, and stacked cuts are labeled
with the same number.

root nodes the stability cost of the best-performing design that
corresponds to that BOP; thus, the cost for any given BOP is the
best cost of any design that is represented by that BOP. Note that
fabrication plans depend solely on the BOP. In general, if we want
to use more than one metric like this one—a metric that depends
on the design, and is not completely determined by a term in the e-
graph—we would need to compute the different trade-offs for the
variations during extraction, as was done with cutting order and
precision, described in Section 4.3.4.

6.3 Convergence

While our results show the significance of the approach to reduce
fabrication cost in practice, we cannot make any guarantees that
the plans we output are on the globally-optimal Pareto front. In-
deed, we do not anticipate that any alternative approach would be
able to have such strong guarantees given the inherent complexity
of the problem. This convergence limitation impacts our method
in three different ways.

Parameter Tuning. Due to limitations in exploring the full com-
binatorial space, parameters of our search algorithm may influ-
ence convergence. Because the key aspect of ICEE is simultane-
ously searching “broad” (design variations) and “deep” (fabrication
plans for various designs), we expose the o parameter that trades-
off between depth and breadth during search. Exposing this single
parameter, enables us to improve performance in special circum-
stances. For example, when not much can be gained from design
variations, a larger o will enable searching deeply on a particular

) [$46.0, 2.38mins]

0 [$109.5, 0.28inches, 24.7 1 mins]
@ Bandsaw Drill @ Tracksaw

[$30.0, 3.6inches, 71.14mins]
@ Chopsaw @ Jigsaw

Fig. 10. Two examples where exploring different designs lead to a wider
diversity of plans, where each trade-off on the Pareto front is only pos-
sible because of the underlying design. The window provides a simpler
example. Design A is very uniform, with only three distinct parts. This de-
sign makes it easy to save on fabrication time because we can stack the
cuts across different stocks. Design B features more varied cuts, unlike A,
where each of the sides was the same length. This irregularity allows all
the parts to be effectively rearranged onto just two pieces of stock. Regular
pieces would not fit as nicely and result in wastage. Material cost is very
low, but because of the tight packing, much more time is needed to make
each individual cut. The bookcase example showcases how some unintu-
itive design decisions lead to cost savings. In this example, Design A’s two
long, identical side pieces mean more opportunities for stacking, of which
the fabrication plan takes full advantage. This design enables a very low
time cost, but uses a lot of material. Design B’s left side is broken up by
the shelves, and without a second long piece, it is possible to pack all the
pieces onto a single piece of lumber. Here, the material used is economical,
but the carpenter must take time to cut pieces from a complex layout.

Material Usage: $20.0
Fabrication Time: 11.4mins

Material Usage: $46.0
Fabrication Time: 2.4mins

Fig. 11. Fabrication results of two window variations. The different designs
and fabrication plans trade-off fabrication time and material usage.

design finding better solutions. All the results shown in this article
use the default value for « that we have found effective in practice.

Comparison with Wu et al. [2019]. The fundamental difference
between our work and [Wu et al. 2019] is that incorporating more
design variations increases the design space, enabling us to find
better performing results. Since the search space of this prior
work is a subset of the search space we explore, our results should
be strictly better. However, since neither method can ensure the

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

3212 « H.Zhaoetal.
>
]
]
3 ! T 5 3
Precision
T
T s 100 130 200 2o 300
Fab. Time
®q L) .
0
Aters T Ho 00 750 1000 1350
lerjgy ™ a0 Material

. |
Spruce plywood . Fiberboard sheet . Aluminum sheet

Fig. 12. A loom model with mixed material where two kinds of wood
(spruce plywood and medium density fiberboard sheet) and one kind of
metal (aluminum sheet) are assigned to each part.

(a) (b)
[U, Magnitude
+5.423e-01
E +4.930e-01
+4.437e-01
+3.944e-01
+3:451e-01
+2.958e-01
21465e-01
+1.972e-01
+1:479e-01
+3.850e-02
+4.930e-02
+0.000e+00
Max U: 0.202 Max U: 0.564 —
. Y
© =R :
P..l; I | |
=L
e o ww Max U 0.591
6 Maximal
‘e Durs U
E S
‘ 5 cese
Sl .
o Lot Max U:0.202
Fab. time
Q °
g
~ a8,
o0 T = .
A/[‘; o 8 8¢ :
log, 3 [13
al Material Max U: 0.102

Fig. 13. Pareto fronts computed from by our pipeline for the Frame model
with three objective functions, material usage f., fabrication time f; and
stability performance. The physical stability of each design variation is
simulated with Abaqus/CAE 2021, measured with the maximal displace-
ment (Max U). All displacements are in inches. In this figure, (a) is the
displacement visualization in a direction, (b) is the displacement visualiza-
tion of the same design but with a different direction, and (c) plots the
Pareto fronts computed from our pipeline where three design variations
are selected.

results lie on the true Pareto front due to limitations in conver-
gence, tuning parameters of both approaches may influence this
result. An example of this limitation is shown in the A-Chair
example in Figure 7. We show in the supplemental material
(Section 2.4) how tuning « to explore more deeply improves this
result and also report experiments for tuning the four parameters
from [Wu et al. 2019].

Increasing the Design Space. A final implication of the intractable
search is that it is possible to achieve worse results by increasing
the design space in special circumstances. We discuss in the sup-
plemental material (Section 2.4) an example where we make the
design space 145 times larger by including variations that do not
benefit the search.

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

6.4 Limitations and Future Work

Our current approach encodes only discrete design variants in the
BOP E-graph. An interesting direction for future work would be to
support continuous variations in the designs space, which can pro-
vide a larger space of fabrication plans to explore. Such variations
could result in designs that do not preserve the original shape but
have similar appearance and functionality. However, supporting
continuous design variants in an e-graph would require designing
a new metric for comparing two design variants for equivalence.
This is challenging because e-graphs heavily exploit transitivity, so
any error in the metric could lead to arbitrarily different designs
being considered “equivalent”.

Several steps of our algorithm can also be parallelized for per-
formance (e.g., generating design variants)—we leave this as an ex-
tension for the future.

Another direction we are eager to explore is accounting for
other factors in the Pareto front. Currently, our technique finds
a design variant and fabrication plan that optimizes fabrication
time, material cost, and precision. Other interesting factors that
can guide the search include stability measurement of different de-
sign variations and assembly considerations. The assembly process
will not only impact the total fabrication time and cost but should
be considered when computing the structural soundness and dura-
bility of the final product. We are also interested in exploring more
complex wood connectors (integral joints).

We are also keen to explore broader applications of the ICEE
strategy for integrating feedback-directed search in other e-graph-
based optimization techniques including additive and subtractive
manufacturing. Past work applying e-graphs for design optimiza-
tion in CAD [Nandi et al. 2020] and for improving accuracy in
floating-point code [Panchekha et al. 2015] have relied on ad hoc
techniques for controlling the growth of the e-graph, e.g., by care-
fully tuning rules used during rewrite-based optimization. We
hope to explore whether ICEE can help with optimization in such
domains by focusing the search on more-profitable candidates and
easing implementation effort by reducing the need for experts to
carefully tune rewrite rules.

The most time-consuming part of our ICEE algorithm lies in the
Pareto front extraction phase. A pruning strategy with learning-
based methods for predicting the objective metrics of an arrange-
ment might be an interesting and valuable area of research.

7 CONCLUSION

We have presented a new approach to co-optimizing model de-
sign variations and their fabrication plans. Our approach relies
on the insight that fabrication plans across design variants will
share similar structure. We capture this sharing with the BOP
E-graph data structure that considers fabrication plans equiva-
lent if they produce the same BOP. The BOP E-graph also lets
us guide the search toward profitable design variants/fabrication
plans with a technique we call ICEE that may be useful for the
uses of e-graphs in other applications. Results generated by our
tool compare favorably against both expert-generated designs and
a baseline built using prior work, indicating that the sharing
captured by the BOP E-graph is essential to efficiently explor-
ing the large, combined space of design variants and fabrication
plans.

2.4
2.4

Co-Optimization of Design and Fabrication Plans for Carpentry « 32:13

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for their
helpful feedback; Haomiao Wu for her contribution to the algo-
rithm development in the early stage of the project; Elias Baldwin,
David Tsay, Alexander Lefort, and Qiyang Tan for helping the
experiments.

REFERENCES

Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Bernd Bickel, Paolo Cignoni, and
Nico Pietroni. 2019. Volume-aware design of composite molds. ACM Transactions
on Graphics 38, 4 (2019), 1-12.

Anne Auger, Johannes Bader, Dimo Brockhoff, and Eckart Zitzler. 2009. Theory of the
hypervolume indicator: Optimal p-distributions and the choice of the reference
point. In Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic
Algorithms. 87-102.

Bernd Bickel, Paolo Cignoni, Luigi Malomo, and Nico Pietroni. 2018. State of the art
on stylized fabrication. Computer Graphics Forum 37, 6 (2018), 325-342. DOI : https:
//doi.org/10.1111/cgf.13327

Paolo Cignoni, Nico Pietroni, Luigi Malomo, and Roberto Scopigno. 2014. Field-
aligned mesh joinery. ACM Transactions on Graphics 33, 1 (2014), 1-12.

Kalyanmoy Deb. 2014. Multi-objective optimization. Search Methodologies. Springer.

Kalyanmoy Deb and Himanshu Jain. 2013. An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting approach, part
I: Solving problems with box constraints. IEEE Transactions on Evolutionary Com-
putation 18, 4 (2013), 577-601.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A fast and
elitist multiobjective genetic algorithm: NSGA-IL. IEEE Transactions on Evolution-
ary Computation 6, 2 (2002), 182-197.

Kalyanmoy Deb and Ankur Sinha. 2009. Solving bilevel multi-objective optimization
problems using evolutionary algorithms. In Proceedings of the International Con-
ference on Evolutionary Multi-criterion Optimization. Springer, 110-124.

Stephan Dempe. 2018. Bilevel Optimization: Theory, Algorithms and Applications. TU
Bergakademie Freiberg, Fakultét fir Mathematik und Informatik.

Simon Duenser, Roi Poranne, Bernhard Thomaszewski, and Stelian Coros. 2020. Robo-
Cut: Hot-wire cutting with robot-controlled flexible rods. ACM Transactions on
Graphics 39, 4 (2020), 98-1.

Gabriele Eichfelder. 2010. Multiobjective bilevel optimization. Mathematical Program-
ming 123, 2 (2010), 419-449.

Jimmy Etienne, Nicolas Ray, Daniele Panozzo, Samuel Hornus, Charlie CL Wang,
Jonas Martinez, Sara McMains, Marc Alexa, Brian Wyvill, and Sylvain Lefebvre.
2019. CurviSlicer: Slightly curved slicing for 3-axis printers. ACM Transactions on
Graphics 38, 4 (2019), 1-11.

Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayaraman, and
Daniel Cohen-Or. 2015. Computational interlocking furniture assembly. ACM
Transactions on Graphics 34, 4 (2015), 11 pages. DOI:https://doi.org/10.1145/
2766892

Akash Garg, Alec Jacobson, and Eitan Grinspun. 2016. Computational design of re-
configurables. ACM Transactions on Graphics 35, 4 (2016), 90-1.

Konstantinos Gavriil, Ruslan Guseinov, Jesus Pérez, Davide Pellis, Paul Henderson,
Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational design of
cold bent glass facades. ACM Transactions on Graphics 39, 6 (2020), 1-16.

Werner Halter and Sanaz Mostaghim. 2006. Bilevel optimization of multi-component
chemical systems using particle swarm optimization. In Proceedings of the 2006
IEEE International Conference on Evolutionary Computation. IEEE, 1240-1247.

Kristian Hildebrand, Bernd Bickel, and Marc Alexa. 2013. Orthogonal slicing for addi-
tive manufacturing. Computers & Graphics 37, 6 (2013), 669-675.

Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A goal-directed superopti-
mizer. SIGPLAN Notices 37, 5 (2002), 304-314. DOI: https://doi.org/10.1145/543552.
512566

Bongjin Koo, Jean Hergel, Sylvain Lefebvre, and Niloy J. Mitra. 2017. Towards zero-
waste furniture design. IEEE Transactions on Visualization and Computer Graphics
23,12 (2017), 2627-2640. DOI: https://doi.org/10.1109/TVCG.2016.2633519

Bongjin Koo, Wilmot Li, JiaXian Yao, Maneesh Agrawala, and Niloy J. Mitra. 2014. Cre-
ating works-like prototypes of mechanical objects. ACM Transactions on Graphics
33,6 (2014), 1-9.

Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi. 2011. Converting 3D
furniture models to fabricatable parts and connectors. In Proceedings of the ACM
SIGGRAPH 2011 Papers. ACM, New York, NY, 6 pages. DOI:https://doi.org/10.
1145/1964921.1964980

Danny Leen, Tom Veuskens, Kris Luyten, and Raf Ramakers. 2019. JigFab: Computa-
tional fabrication of constraints to facilitate woodworking with power tools. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems.
ACM, New York, NY, 12 pages. DOI : https://doi.org/10.1145/3290605.3300386

Jie Lu, Jialin Han, Yaoguang Hu, and Guangquan Zhang. 2016. Multilevel decision-
making: A survey. Information Sciences 346, C (2016), 463-487. https://dl.acm.org/
doi/abs/10.1016/j.ins.2016.01.084.

Ali Mahdavi-Amiri, Fenggen Yu, Haisen Zhao, Adriana Schulz, and Hao Zhang. 2020.
VDAC: Volume decompose-and-carve for subtractive manufacturing. ACM Trans-
actions on Graphics 39, 6 (2020), 1-15.

Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng. 2019. LayerCode:
Optical barcodes for 3D printed shapes. ACM Transactions on Graphics 38, 4
(2019), 1-14.

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova,
Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured CAD mod-
els with equality saturation and inverse transformations. In Proceedings of the
41st ACM SIGPLAN International Conference on Programming Language Design
and Implementation. Alastair F. Donaldson and Emina Torlak (Eds.), ACM, 31-44.
DOI: https://doi.org/10.1145/3385412.3386012

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph.D. Dissertation.
Stanford University, Stanford, CA, AAI8011683.

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015.
Automatically improving accuracy for floating point expressions. SIGPLAN No-
tices 50, 6 (2015), 1-11. DOI : https://doi.org/10.1145/2813885.2737959

Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020. Semantic code
search via equational reasoning. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. Association for
Computing Machinery, New York, NY, 1066-1082. DOI: https://doi.org/10.1145/
3385412.3386001

Yuliy Schwartzburg and Mark Pauly. 2013. Fabrication-aware design with intersect-
ing planar pieces. In Proceedings of the Computer Graphics Forum. Wiley Online
Library, 317-326.

Xinping Shi and Hong Sheng Xia. 2001. Model and interactive algorithm of bi-level
multi-objective decision-making with multiple interconnected decision makers.
Journal of Multi-Criteria Decision Analysis 10, 1 (2001), 27-34.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. 2017. A review on bilevel optimiza-
tion: From classical to evolutionary approaches and applications. IEEE Transac-
tions on Evolutionary Computation 22, 2 (2017), 276-295.

Peng Song, Chi-Wing Fu, Yueming Jin, Hongfei Xu, Ligang Liu, Pheng-Ann Heng, and
Daniel Cohen-Or. 2017. Reconfigurable interlocking furniture. ACM Transactions
on Graphics 36, 6 (2017), 14 pages. DOI : https://doi.org/10.1145/3130800.3130803

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-based translation validator
for LLVM. In Proceedings of the 23rd International Conference on Computer Aided
Verification. Springer-Verlag, Berlin, 737-742.

Pengbin Tang, Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2020. A
harmonic balance approach for designing compliant mechanical systems with
nonlinear periodic motions. ACM Transactions on Graphics 39, 6 (2020), 1-14.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation:
A new approach to optimization. In Proceedings of the 36th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, New York,
NY, 264-276. DOI:https://doi.org/10.1145/1480881.1480915

Nobuyuki Umetani, Takeo Igarashi, and Niloy J. Mitra. 2012. Guided exploration of
physically valid shapes for furniture design. ACM Transactions on Graphics 31, 4
(2012), 11 pages. DOI : https://doi.org/10.1145/2185520.2185582

Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. 2020.
SPORES: Sum-product optimization via relational equality saturation for large
scale linear algebra. In Proceedings of the VLDB Endowment. 1919-1932. DOI : https:
//doi.org/10.14778/3407790.3407799

Ziqi Wang, Peng Song, Florin Isvoranu, and Mark Pauly. 2019. Design and structural
optimization of topological interlocking assemblies. ACM Transactions on Graph-
ics 38, 6(2019), 1-13.

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. Egg: Fast and extensible equality saturation. In Pro-
ceedings of the ACM on Programming Languages. 29 pages. DOI : https://doi.org/10.
1145/3434304

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry compiler. ACM Transactions on Graphics 38,
6 (2019), 1-14.

Jinfan Yang, Chrystiano Araujo, Nicholas Vining, Zachary Ferguson, Enrique Rosales,
Daniele Panozzo, Sylvain Lefevbre, Paolo Cignoni, and Alla Sheffer. 2020. DHFS-
licer: Double height-field slicing for milling fixed-height materials. ACM Transac-
tions on Graphics 39, 6 (2020), 1-17.

Yong-Liang Yang, Jun Wang, and Niloy J. Mitra. 2015. Reforming shapes for material-
aware fabrication. In Proceedings of the Computer Graphics Forum. Wiley Online
Library, 53-64.

Yafeng Yin. 2000. Genetic-algorithms-based approach for bilevel programming mod-
els. Journal of Transportation Engineering 126, 2 (2000), 115-120.

Xiaoting Zhang, Guoxin Fang, Mélina Skouras, Gwenda Gieseler, Charlie Wang, and
Emily Whiting. 2019. Computational design of fabric formwork. ACM Transac-
tions on Graphics 38, 4 (2019), 1-13.

Haisen Zhao, Fanglin Gu, Qi-Xing Huang, Jorge Garcia, Yong Chen, Changhe Tu,
Bedrich Benes, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2016. Con-
nected fermat spirals for layered fabrication. ACM Transactions on Graphics 35, 4
(2016), 1-10.

Received July 2021; revised November 2021; accepted December 2021

ACM Transactions on Graphics, Vol. 41, No. 3, Article 32. Publication date: March 2022.

https://doi.org/10.1111/cgf.13327
https://doi.org/10.1145/2766892
https://doi.org/10.1145/543552.512566
https://doi.org/10.1109/TVCG.2016.2633519
https://doi.org/10.1145/1964921.1964980
https://doi.org/10.1145/3290605.3300386
https://dl.acm.org/doi/abs/10.1016/j.ins.2016.01.084
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3385412.3386001
https://doi.org/10.1145/3130800.3130803
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/2185520.2185582
https://doi.org/10.14778/3407790.3407799
https://doi.org/10.1145/3434304

